Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét\(12n+1=12n+24-23=12\left(n+2\right)-23\)
\(\Rightarrow\frac{12n+1}{2n\left(n+2\right)}=\frac{12\left(n+2\right)-23}{2n\left(n+2\right)}=\frac{12\left(n+2\right)}{2n\left(n+2\right)}-\frac{23}{2n\left(n+2\right)}=\frac{6}{n}-\frac{23}{2n\left(n+2\right)}\)
Xét\(\frac{23}{2n\left(n+2\right)}\)ta có:
\(2n\left(n+2\right)⋮2\)
=> \(2n\left(n+2\right)\)là số chẵn
mà 23 là số lẻ
\(\Rightarrow\frac{23}{2n\left(n+2\right)}\)Tối giản
\(\Rightarrow\frac{6}{n}-\frac{23}{2n\left(n+2\right)}\)tối giản
Vậy \(\frac{12n+1}{2n\left(n+2\right)}\)Tối giản (ĐPCM)
Nếu n=2k (k thuộc N) thì n+5=2k+5 chia hết cho 2
Nếu n=2k+1 (k thuộc N) thì n+4 =2k+5 chia hết cho 2
Vậy (n+4)(n+5) chia hết cho 2
Câu a
Nếu n=2k thì n+4 = 2k+4 chia hết cho 2 => (n+4)(n+5) chia hết cho 2
Nếu n=2k+1 thì n+5=2k+5+1=2k+6 chia hết cho 2=> (n+4)(n+5) chia hết cho hai
Vậy (n+4)(n+5) chia hết cho 2
Câu b
Ta có n+2012 và n+2013 là hai số tự nhiên liên tiếp
Gọi ƯCLN(n+2012; n+2013)=d
Vì ƯCLN(n+2012;n+2013)=d
=> n+2012 chia hết cho d, n+2013 chia hết cho d
Mà n+2013-n+2012=1=> d=1
Vậy n+2012 và n+2013 là 2 số nguyên tố cùng nhau
tớ làm cho cậu câu B thôi đó ủng hộ thì tớ làm tiếp
B)gọi ƯCLN của n+1 và 2n+3 là d
ta có:
n+1\(⋮\)d=> (n+1)*2\(⋮\)d => 2n+2\(⋮\)d => (2n+3)-(2n+2)\(⋮\)d => 1\(⋮\)d
vậy p/s trên là PSTG (điều phải chứng minh )
a)Ta có:
\(\frac{2011}{2012}>\frac{1006}{2012}=\frac{1}{2};\frac{2012}{2013}>\frac{2012}{4024}=\frac{1}{2}\)
\(\Rightarrow\)\(\frac{2011}{2012}+\frac{2012}{2013}>\frac{1}{2}+\frac{1}{2}=1\)hay \(\frac{2011}{2012}+\frac{2012}{2013}>1\)
Ta có: \(2011+2012< 2012+2013\Rightarrow\frac{2011+2012}{2012+2013}< 1\)
Suy ra: A>B
b) \(\frac{7}{16}=\frac{1}{8}+\frac{5}{16}=\frac{3}{16}+\frac{1}{4}=....\)
Gọi p là ƯC(2n+3,4n+8)
Ta có
2n+3 chia hết cho p <=> 1(2n+3) chia hết cho p
4n+8 chia hết cho p <=> (4n+8):2 chia hết cho p
=> (4n+8):2 - 1(2n+3) chia hết cho p
=> 2n+4 - 2n+3 chia hết cho p
=> 1 chia hết cho p
=> p thuộc Ư(1)
=> 2n+3 / 4n+8 là phân số tối giản