Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(n-5;3n-14) là d, Ta có :
n-5 =3n-15 chia hết cho d ; 3n-14 chia hết cho d
=>(n-5)-(3n-14)=1 chia hết cho d
=>d=1 hoặc -1 =>n-5 và 3n-14 là psố tối giản
k cho min nha !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Gọi \(ƯCLN\left(2n+5;3n+7\right)\) là \(d\)
\(\Rightarrow\)\(\left(2n+5\right)⋮d\) và \(\left(3n+7\right)⋮d\)
\(\Rightarrow\)\(3\left(2n+5\right)⋮d\) và \(2\left(3n+7\right)⋮d\)
\(\Rightarrow\)\(\left(6n+15\right)⋮d\) và \(\left(6n+14\right)⋮d\)
\(\Rightarrow\)\(\left(6n+15\right)-\left(6n+14\right)⋮d\)
\(\Rightarrow\)\(\left(6n-6n+15-14\right)⋮d\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)\)
Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(ƯCLN\left(2n+5;3n+7\right)=\left\{1;-1\right\}\)
Vậy \(\frac{2n+5}{3n+7}\) là phân số tối giản
a Gọi ước chung của 2n+5 và 3n+7 là n
2n+5 ⋮ x=>6n+15⋮x
3n+7 ⋮ x =>6n+14 ⋮x
=>1 chia hết x=> x thuộc ước của 1
Vậy phân số đó tối giản
b 6n-14 chia hết x
2n-5 chia hết x=>6n-15 chia hết x
=>1 chia hết x=> x thuộc ước của 1
Vậy phân số đó tối giản
Hướng dẫn: Đặt (tử, mẫu)=d
Phương pháp: Tìm được d = 1.
Cách làm: Nhân tử với a, nhân mẫu với b (a, b là số nguyên) sao cho khi trừ đi 2 kết quả mới triệt tiêu được 2 biểu thức chứa n.
Cuối cùng sẽ tìm được 1 là bội của b => d=1
Còn lại cậu tự làm nhé!
Gọi ƯCLN(n-5;3n-14) = d
\(\Rightarrow\begin{cases}n-5⋮d\\3n-14⋮d\end{cases}\)
\(\Rightarrow\begin{cases}3\left(n-5\right)⋮d\\3n-14⋮d\end{cases}\)
\(\Rightarrow\begin{cases}3n-15⋮d\\3n-14⋮d\end{cases}\)
=> ( 3n - 14 ) - ( 3n - 15 ) \(⋮\) d
=> 1 \(⋮\) d
=> d = 1
Vậy \(\frac{n-5}{3n-14}\) là phân số tối giản
Gọi d là (2n+5;3n+7)
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)
=> [6n+15 - ( 6n+14 )] \(⋮\) d
=> 1 \(⋮\)d
=> phân số trên tối giản
gọi \(\text{Ư}CLN_{\left(5n+3;3n+2\right)}=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}5n+3⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(5n+3\right)⋮d\\5\left(3n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}15n+9⋮d\\15n+10⋮d\end{cases}}}\)
\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)
\(\Rightarrow15n+10-15n-9⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
vậy phân số \(\frac{5n+3}{3n+2}\) là phân số tối giản với mọi \(n\inℕ\)
gọi d là ƯC(5n+3; 3n+2)
\(\Rightarrow\hept{\begin{cases}5n+3⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(5n+3\right)⋮d\\5\left(3n+2\right)⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}15n+9⋮d\\15n+10⋮d\end{cases}}\)
=> (15n + 10) - (15n + 9) \(⋮\) d
=> 15n + 10 - 15n - 9 \(⋮\) d
=> (15n - 15n) + (10 - 9) \(⋮\) d
=> 1 \(⋮\) d
=> d = 1
=> \(A\) là phân số tối giản với mọi n thuộc N
goi d=UCLN(n3+2n;n4+3n2+1) (d\(\in\)N*)
\(\Rightarrow\)n3+2n va n4+3n2 +1 chia het cho d \(\Rightarrow\)n4+3n2+1-n(n3+2n) =n2+1 chia het cho d
n3+2n -n(n2+1)=n chia het cho d\(\Rightarrow\)n2 +1-n.n==1 chia het cho d\(\Rightarrow\)d \(\in\)U(1)ma d lon nhat , d\(\in\)N* nen d=1
do đó phân số trên là tối giản
bài này dễ mà
n - 5 = 3 {n-5} = 3n-15
suy ra : 3n-15 : 3n-14 = -1 mà Ước của 1 phân số là 1 với -1 thế nên phân số đó là phân số tối giản