Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a, b, c > 0
=> a/b > 0 ; b/c > 0 ; c/a > 0
Áp dụng bđt Cauchy cho :
- Bộ số a/b, 1 ta được :
\(\frac{a}{b}+1\ge2\sqrt{\frac{a}{b}\cdot1}=2\sqrt{\frac{a}{b}}\)(1)
- Bộ số b/c, 1
\(\frac{b}{c}+1\ge2\sqrt{\frac{b}{c}\cdot1}=2\sqrt{\frac{b}{c}}\)(2)
- Bộ số c/a, 1
\(\frac{c}{a}+1\ge2\sqrt{\frac{c}{a}\cdot1}=2\sqrt{\frac{c}{a}}\)(3)
Nhân (1), (2) và (3) theo vế
=> \(\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)\left(\frac{c}{a}+1\right)\ge2\sqrt{\frac{a}{b}}\cdot2\sqrt{\frac{b}{c}}\cdot2\sqrt{\frac{c}{a}}=8\sqrt{\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}}=8\sqrt{\frac{abc}{abc}}=1\)
=> đpcm
Dấu "=" xảy ra <=> a = b = c
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Cái này chuẩn CBS dạng đặc biệt với hai tử số bằng 1
Dấu "=" xảy ra khi \(a=b\)
Cauchy đi mài ._.
Vì a, b > 0 nên áp dụng bđt Cauchy cho :
- Bộ số a, b ta được :
\(a+b\ge2\sqrt{ab}\)
- Bộ số 1/a, 1/b ta được :
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{a}\cdot\frac{1}{b}}=2\sqrt{\frac{1}{ab}}=2\cdot\frac{\sqrt{1}}{\sqrt{ab}}=\frac{2}{\sqrt{ab}}\)
Nhân hai vế tương ứng ta có đpcm
Dấu "=" xảy ra <=> a = b
Sao lạ thế nhỉ, áp cái được luôn?
\(2a+\frac{b}{a}+\frac{c}{b}\ge3\sqrt[3]{2a.\frac{b}{a}.\frac{c}{b}}=3\sqrt[3]{2c}\)
Đẳng thức tự xét.
Chắc chắn giả thiết phải là \(a+b+c\le1\).
Áp dụng BĐT Schwars ta có \(VT\ge\frac{9}{a^2+2bc+b^2+2ca+c^2+2bc}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1^2}=9\).
Còn nếu \(a+b+c\ge1\) thì cho a = b = c = 10000 chẳng hạn sẽ sai.
Với x, y, z > 0 ta có BĐT:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\).
BĐT trên dễ dàng dc cm nhờ BĐT Côsi
Thật vậy, theo BĐT C-S thì:
\(x+y+z\ge3\sqrt[3]{xyz};\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\).
Nhân vế với vế ta có:
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) (đpcm).
Dung à mày (:
Ta có \(\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{a}{x+1}+\frac{b}{\left(x+1\right)^2}+\frac{c}{x+2}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{a\left(x+1\right)\left(x+2\right)}{\left(x+1\right)^2\left(x+2\right)}+\frac{b\left(x+2\right)}{\left(x+1\right)^2\left(x+2\right)}+\frac{c\left(x+1\right)^2}{\left(x+1\right)^2\left(x+2\right)}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{a\left(x^2+3x+2\right)}{\left(x+1\right)^2\left(x+2\right)}+\frac{bx+2b}{\left(x+1\right)^2\left(x+2\right)}+\frac{c\left(x^2+2x+1\right)}{\left(x+1\right)^2\left(x+2\right)}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{ax^2+3ax+2a+bx+2b+cx^2+2cx+c}{\left(x+1\right)^2\left(x+2\right)}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{x^2\left(a+c\right)+x\left(3a+b+2c\right)+\left(2a+2b+c\right)}{\left(x+1\right)^2\left(x+2\right)}\)
\(\Rightarrow1=x^2\left(a+c\right)+x\left(3a+b+2c\right)+\left(2a+2b+c\right)\)
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}a+c=0\\3a+b+2c=0\\2a+2b+c=1\end{cases}}\)=> Chịu :)) Khó quá không làm được ... Hoặc do đề sai ;-;
Không sai == Trong sách Nâng cao và phát triển toán 8 tập 1 trang 33 bài 123 ý c
T cũng chịu '-'
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(\ge\frac{1}{2}\frac{4}{a+b}+\frac{1}{2}\frac{4}{b+c}+\frac{1}{2}\frac{4}{c+a}\)
\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)
Dấu "=" xảy ra <=> a = b = c
CM theo bdt co-si
Áp dụng bdt Co - si cho cặp số dương a2/c và c
Ta có: \(\frac{a^2}{c}+c\ge2\sqrt{\frac{a^2}{c}.c}=2a\)(1)
CMTT: \(\frac{b^2}{a}+a\ge2b\)(2)
\(\frac{c^2}{b}+b\ge2c\)(3)
Từ (1); (2) và (3) cộng vế theo vế, ta có:
\(\frac{a^2}{c}+c+\frac{b^2}{a}+a+\frac{c^2}{b}+b\ge2a+2b+2c\)
<=> \(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\ge2a+2b+2c-a-b-c=a+b+c\)(Đpcm)
\(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
Dấu "=" xảy ra <=> a = b = c
BĐT
<=> \(\frac{3\left(a^2+b^2+c^2\right)+ab+bc+ac}{3\left(ac+bc+ac\right)}\ge\frac{8}{9}\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)
<=>\(3\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{a\left(a\left(b+c\right)+bc\right)}{b+c}+...\right)\)
<=> \(3\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(a^2+b^2+c^2+\frac{abc}{b+c}+\frac{abc}{a+c}+\frac{abc}{a+b}\right)\)
<=>\(\frac{1}{3}\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{abc}{b+c}+\frac{abc}{a+c}+\frac{abc}{a+b}\right)\)
Mà \(\frac{abc}{b+c}\le abc.\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{4}\left(ab+bc\right)\)
Khi đó BĐT
<=>\(\frac{1}{3}\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{1}{2}\left(ab+bc+ac\right)\right)\)
=> \(a^2+b^2+c^2\ge ab+bc+ac\)(luôn đúng )
=> ĐPCM
Dấu bằng xảy ra khi a=b=c
Cách này chủ yếu biến đổi tương đương nên chắc phù hợp với lớp 8
Nếu sử dụng SOS nhìn vào sẽ làm đc liền vì có Nesbitt lẫn \(\frac{a^2+b^2+c^2}{ab+bc+ac}\)
Hay thoi chứ để là \(a+b+c\le1\) đy, vì thấy ai cũng bảo đề sai nên sửa đề là vậy đi ạ '-'. Còn nếu pro nào là làm được cái đề gốc kia thì xin giải hộ em ạ T.T
Thầy tao làm như nào tao chép lại y nguyên nhá :)
Dự đoán điểm rơi a = b = c = 1/3
Áp dụng bất đẳng thức Cô si :
\(\frac{1}{a^2+2bc}+9\left(a^2+2bc\right)\ge2\sqrt{\frac{1}{a^2+2bc}\cdot9\left(a^2+2bc\right)}=6\)
TT : \(\frac{1}{b^2+2ac}+9\left(b^2+2ac\right)\ge2\sqrt{\frac{1}{b^2+2ac}\cdot9\left(b^2+2ac\right)}=6\)
\(\frac{1}{c^2+2ab}+9\left(c^2+2ab\right)\ge2\sqrt{\frac{1}{c^2+2ab}\cdot9\left(c^2+2ab\right)}=6\)
Cộng theo vế ta có :
\(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}+9\left(a^2+b^2+c^2+2ab+2bc+2ca\right)\ge18\)
<=> \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}+9\left(a+b+c\right)^2\ge18\)
<=> \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}+9\ge18\)
<=> \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)( đpcm )
Dấu "=" xảy ra <=> a = b = c = 1/3