Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sum\)\(\frac{a}{1+a^2}\)\(\le\)\(\sum\)\(\frac{a}{2a}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
\(VT=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{\frac{2}{3}\left(a+b+c\right)^2}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
sao olm ko hiện \(\sum\) ra nhỉ ? thoi mk ghi lại v
\(\frac{a}{1+a^2}\le\frac{a}{2a}=\frac{1}{2}\)
tương tự 2 cái kia cộng lại t có bđt cần cm
\(\frac{3}{2}\le\)\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
Đặt: b + c = x
a + c = y
a + b = z
Ta có: x + y - z = b + c + a + c - a - b = 2c
\(\frac{x+y-z}{2}=c\)
Tương tự: \(\frac{x+z-y}{2}=b\)
\(\frac{z+y-x}{2}=a\)
Khi đó: VP \(\ge\) \(\frac{z+y-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
VP \(\ge\) \(\frac{z+y}{2x}-\frac{x}{2x}+\frac{x+z}{2y}-\frac{y}{2y}+\frac{x+y}{2z}-\frac{z}{2z}\)
VP \(\ge\) \(\frac{z+y}{2x}-\frac{1}{2}+\frac{x+z}{2y}-\frac{1}{2}+\frac{x+y}{2z}-\frac{1}{2}\)
VP \(\ge\) \(\frac{z+y}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}-\frac{3}{2}\)
VP \(\ge\) \(\frac{1}{2}.\left(\frac{z+y}{x}+\frac{x+z}{y}+\frac{x+y}{z}\right)-\frac{3}{2}\)
VP \(\ge\) \(\frac{1}{2}.\left(\frac{z}{x}+\frac{y}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\right)-\frac{3}{2}\)
Ta có: \(\frac{z}{x}+\frac{x}{z}\ge2\)
\(\Leftrightarrow\)\(\frac{z^2}{x\text{z}}+\frac{x^2}{x\text{z}}\ge\frac{2xz}{x\text{z}}\)
\(\Leftrightarrow\)\(x^2-2xz+z^2\ge0\)
\(\Leftrightarrow\)\(\left(x-z\right)^2\ge0\) ( luôn đúng )
\(\Rightarrow\) \(\frac{z}{x}+\frac{x}{z}\ge2\)
Tương tự: \(\frac{y}{x}+\frac{x}{y}\ge2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\)
\(\Rightarrow\)VP\(\ge\)\(\frac{1}{2}.6-\frac{3}{2}\)
VP\(\ge\frac{3}{2}\)
\(\Rightarrow\) \(\frac{3}{2}\le\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
Đặt \(A=\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\)
Hmm... Ta có BĐT phụ : \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)"=" <=> x = y
\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right);\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right);\frac{1}{c+a}\le\frac{1}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow A\le\frac{1}{2}\left(\frac{ab+ac+bc}{abc}\right)\)
\(\Rightarrow A\le\frac{3ab+3ac+3bc}{6abc}\)
Ta có: \(a^2+b^2+c^2\ge ab+ac+bc\)
\(\Rightarrow A\le\frac{3ab+3ac+3bc}{6abc}\le\frac{a^2+b^2+c^2+2ab+2ac+2bc}{6abc}=\frac{\left(a+b+c\right)^2}{6abc}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Đặt A= abc(bc+a2)(ac+b2)(ab+c2)
Giả sử 1/a + /b + 1/c - (a+b)/(bc+a2) - (b+c)/(ac+b2) - (c+a)/(ab+c2) >=0
<=> (a4b4+b4c4+c4a4-a4b2c2-b4a2c2-c4a2b2)/A >= 0
<=> (2a4b4+2b4c4+2c4a4-2a4b2c2-2b4a2c2-2c4a2b2)/2A >= 0
<=> (a2b2-b2c2)2+(b2c2-c2a2)2+(c2a2-a2b2)2/2A >= 0 (đúng với mọi a,b,c)
mk chỉ lm theo cách hiểu của mk thôi!nếu ko đúng thì thông cảm nha!
giả sử: \(a\ge b\ge c>0\)(ko mất tính tổng quát)
\(\Rightarrow a^2\ge ac\)\(\Leftrightarrow a^2+bc\ge ac+bc\) (vì b>0;c>0)
\(\Leftrightarrow a^2+bc\ge c\left(a+b\right)\)
\(\Leftrightarrow\frac{a+b}{a^2+bc}\le\frac{1}{c}\) (vì a;b;c>0) (1)
c/m tương tự ta đc: \(\frac{b+c}{ac+b^2}\le\frac{1}{a};\) (2)
\(\frac{c+a}{ab+c^2}\le\frac{1}{b}\) (3)
từ (1),(2),(3)=>đpcm
Lời giải:
Vì $a,b,c\in (0;1]$ nên $ab,bc,ac\in (0;1]$
Do đó: \((ab-1)(bc-1)(ca-1)\leq 0\)
\(\Leftrightarrow (ab^2c-ab-bc+1)(ca-1)\leq 0\)
\(\Leftrightarrow a^2b^2c^2-(ab^2c+a^2bc+abc^2)+ab+bc+ac-1\leq 0\)
\(\Leftrightarrow a^2b^2c^2+ab+bc+ac\leq ab^2c+a^2bc+abc^2+1\)
\(\Leftrightarrow \frac{a^2b^2c^2+ab+bc+ac}{abc}\leq \frac{ab^2c+a^2bc+abc^2+1}{abc}\)
\(\Leftrightarrow abc+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq a+b+c+\frac{1}{abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
Ta có: \(\left(\left|x\right|-\left|y\right|\right)^2\ge0\)
\(\Rightarrow x^2+y^2\ge2\left|xy\right|\)
\(\Rightarrow\left|\frac{2xy}{x^2+y^2}\right|\le1\)(*)
Lại có: \(\left(a+b\right)^2+\left(1-ab\right)^2=\left(a^2+1\right)\left(b^2+1\right)\)
Nên: \(\left|\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\right|=\left|\frac{\left(a+b\right)\left(1-ab\right)}{\left(a+b\right)^2+\left(1-ab\right)^2}\right|\)
Áp dụng (*), ta có: \(\left|\frac{\left(a+b\right)\left(1-ab\right)}{\left(a+b\right)^2+\left(1-ab\right)^2}\right|\le\frac{1}{2}\)
\(\Rightarrow\left|\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\right|\le\frac{1}{2}\)
\(\Rightarrow\frac{-1}{2}\le\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\le\frac{1}{2}\) \(\left(đpcm\right)\)
Do biểu thức đề bài và BĐT đều mang tính đối xứng, không mất tính tổng quát giả sử \(a\ge b\ge c\)
Đặt \(\left(x;y;z\right)=\left(b+c-a;c+a-b;a+b-c\right)\) \(\Rightarrow\left\{{}\begin{matrix}y>0\\z>0\end{matrix}\right.\)
Ta cần chứng minh \(xyz\le1\)
Nếu \(x\le0\) thì \(xyz\le0\Rightarrow xyz< 1\) BĐT hiển nhiên đúng
Nếu \(x>0\)
\(\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{x+z}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\) \(\Rightarrow x+y+z=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\)
\(\Rightarrow x+y+z\le\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\)
\(\Leftrightarrow\sqrt{xyz}\left(x+y+z\right)\le\sqrt{x}+\sqrt{y}+\sqrt{z}\)
\(\Leftrightarrow xyz\left(x+y+z\right)^2\le\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le3\left(x+y+z\right)\)
\(\Leftrightarrow xyz\left(x+y+z\right)\le3\)
\(\Leftrightarrow xyz.3\sqrt[3]{xyz}\le xyz\left(x+y+z\right)\le3\)
\(\Leftrightarrow xyz\sqrt[3]{xyz}\le1\Leftrightarrow xyz\le1\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
Ta có:\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
\(\ge\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{b+c+d+a}+\frac{d}{d+a+b+c}=1\)
và \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
\(\le\frac{a}{a+c}+\frac{b}{b+d}+\frac{c}{c+a}+\frac{d}{d+b}\)
\(=1+1=2\)
Vậy \(1\le\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\le2\)(đpcm)