Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo mình thế này mới đúng
Vì a < b và a và b là 2 số tự nhiên liên tiếp => b = a + 1
Gọi ƯCLN(a,b) = d
=> \(\begin{cases}a⋮d\\b⋮d\end{cases}=>\orbr{\begin{cases}a⋮d\\a+1⋮d\end{cases}}\)
=> \(a+1-a⋮d=>1⋮d\)
=> \(d\inƯ\left(1\right)=>d=1\)
Vì (a,b) = 1 => a và b là 2 số nguyên tố cùng nhau
Gọi d=UCLN(2k-1;2k+1)
\(\Leftrightarrow2k+1-2k+1⋮d\)
=>2⋮d
mà 2k+1 là số lẻ
nên d=1
=>UCLN(2k-1;2k+1)=1
a cũng có thể là \(2k+1\Rightarrow b=2k+2\), bạn làm thiếu.
Nói chung, bài toán giống như đi từ trong nhà ra cổng. Thay vì đi thẳng ra ngoài cổng, việc bạn làm giống như đi vài vòng quanh vườn xong mới chịu ra cổng vậy :D
Làm thế này có phải đơn giản, chính xác và dễ hiểu ko:
Do a và b là 2 STN liên tiếp \(\Rightarrow b=a+1\)
Gọi ƯCLN của a và b là d \(\RightarrowƯCLN\left(a;a+1\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}a⋮d\\\left(a+1\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left(a+1\right)-a⋮d\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow a;b\) nguyên tố cùng nhau
Đặt \(\left(2n+1;2n+3\right)=d\) (d lẻ)
Khi đó \(\left\{{}\begin{matrix}2n+1⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Do d lẻ \(\Rightarrow d=1\)
\(\Rightarrow\) đpcm
goij ucln (2n+1;2n+3)=d
=> 2n+1: hết d
2n+3: hết d
=> 2n+3-2n+1: hết d
2: hết d => de{1;2}
lập luận d là số lẻ
=> d=1
VẬY...
Bài 1
Tách n thành 2 dạng 2k +1 (lẻ) và 2k (chẵn)
Với trường hợp 2k + 1 (lẻ) ,ta có :
(n + 4)(n + 5)
= (2k + 1 + 4)(2k + 1 + 5)
= (2k + 5)(2k + 6)
= (2k + 5).2.(k + 3) chia hết cho 2 (1)
Với trường hợp 2k (chẵn) ,ta có :
(n + 4)(n + 5)
= (2k + 4)(2k + 5)
= 2.(k + 2)(2k + 5) chia hết cho 2 (2)
Từ 1 và 2
=> Với mọi x , thì (n + 4)(n + 5) chia hết cho 2
(a,b) =1
1) gọi p là một ước nguyên tố của ab, vì p nguyên tố, (a,b) nguyên tố cùng nhau nên p là ước của a (không là ước của b) hoặc ngược lại
=> (a + b) không chia hết cho p (có đúng 1số chia hết cho p, số còn lại ko chia hết nên tổng ko chia hết cho p)
(a+b) và ab ko có ước chung nguyên tố nào => là 2 số nguyên tố cùng nhau tức là UCLN(a+b,ab) = 1
2) với (a, b) = 1 ta cm (a, a+b) = 1
gọi d là ước (khác 1) của a => d không là ước của b (do a, b nguyên tố cùng nhau) => a+b không chia hết cho p (p ko là ước của a+b)
Đăt c = a+b, theo cm trên ta có (a,c) = 1
ad câu a ta có (a+c) và ac nguyên tố cùng nhau
<< a+c = a+a+b = 2a+b; ac = a(a+b)>>
Vậy 2a+b và a(a+b) nguyên tố cùng nhau