Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^2+2n-x^2-x=0.\)
\(\Delta'_n=1+x^2+x\ne k^2\left(k\in Z\right)\Rightarrow dpcm\)
Ta có :
\(x\left(x+1\right)=n\left(n+2\right)\)
\(\Leftrightarrow x^2+x=n^2+2n\)
\(\Leftrightarrow x^2+x+1=n^2+2n+1\)
\(\Leftrightarrow x^2+x+1=\left(n+1\right)^2\)
Vì n là số nguyên cho trước thì \(\left(n+1\right)^2\) là một số chính phương
\(x>0\), Ta có : \(x^2+x+1>x^2\)
\(x^2+x+1< x^2+x+1+x=x^2+2x+1\)
\(=\left(x+1\right)^2\)
\(\Rightarrow x^2< x^2+x+1< \left(x+1\right)^2\)
Hay \(x^2< \left(n+1\right)^2< \left(x+1\right)^2\)
=> Vô lí do không thể có số chính phương nào tồn tại giữa hai số chính phương liên tiếp
Vậy không thể tồn tại số nguyên dương x
Ta có:\(x\left(x+1\right)=k\left(k+2\right)\)
\(\Rightarrow x^2+x=k^2+2k\)
\(\Rightarrow x^2+x+1=k^2+2k+1\)
\(\Rightarrow x^2+x+1=\left(k+1\right)^2\)
Lại có:
\(x^2+x+1< x^2+2x+1=\left(x+1\right)^2\left(1\right)\) vì \(x\in Z^+\)
\(x^2+x>x^2\left(2\right)\)vì \(x\in Z^+\)
Từ \(\left(1\right);\left(2\right)\Rightarrow x^2< x^2+x+1< \left(x+1\right)^2\)
\(\Rightarrow x^2< \left(k+1\right)^2< \left(x+1\right)^2\)
Do \(\left(k+1\right)^2\) là số chính phương bị kẹp giữa 2 số chính phương liên tiếp nên không tồn tại k;x thỏa mãn đề bài
cậu chỉ ra mk xem cách giải cái bài này nghĩ ma k ra ak?
Tìm tất cả các số nguyên dương k sao cho tồn tại số nguyên dương n thỏa mãn 2n+11 chia hết cho 2k-1.
Để tìm tất cả các số nguyên dương k thỏa mãn điều kiện đã cho, ta sẽ giải phương trình theo n.
2n + 11 chia hết cho 2k - 1 có nghĩa là tồn tại một số nguyên dương m sao cho:
2n + 11 = (2k - 1)m
Chuyển biểu thức trên về dạng phương trình tuyến tính:
2n - (2k - 1)m = -11
Ta nhận thấy rằng nếu ta chọn một số nguyên dương nào đó, ta có thể tìm được một số nguyên dương k tương ứng để phương trình trên có nghiệm. Do đó, ta chỉ cần tìm tất cả các số nguyên dương n thỏa mãn phương trình trên.
Để giải phương trình này, ta có thể sử dụng thuật toán Euclid mở rộng (Extended Euclidean Algorithm). Tuy nhiên, trong trường hợp này, ta có thể tìm được một số giá trị n và k thỏa mãn phương trình bằng cách thử từng giá trị của n và tính giá trị tương ứng của k.
Dưới đây là một số cặp giá trị n và k thỏa mãn phương trình đã cho:
(n, k) = (3, 2), (7, 3), (11, 4), (15, 5), (19, 6), …
Từ đó, ta có thể thấy rằng có vô số giá trị n và k thỏa mãn phương trình đã cho.
để mk giúp, câu này có vẻ đễ