K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

Cút mẹ mày đi!

4 tháng 3 2018

ví căn bậc hai của 10=3,16227766017 =>căn bậc hai của 10 là số vô tỉ

AH
Akai Haruma
Giáo viên
10 tháng 10 2023

Sao mình không thấy biểu thức đâu bạn nhỉ?

11 tháng 10 2023

Số vô tỉ là không phải số hữu tỉ không thể biểu diễn dưới dạng tỉ số của 2 số nguyên 

12 tháng 7 2018

Giả sử \(\sqrt{2018}\) là số hữu tỉ

 \(\Rightarrow\) \(\sqrt{2018}\) có thể viết được dưới dạng \(\sqrt{2018}=\frac{m}{n}\left(m;n\in Z;\left(m;n\right)=1;n\ne1\right)\)

\(\Leftrightarrow2018=\frac{m^2}{n^2}\Rightarrow m^2⋮n^2\Rightarrow m⋮n\) Mà \(\left(m;n\right)=1\Rightarrow n=1\) Trái với giả thiết

\(\Rightarrow\) Điều giả sử sai \(\Rightarrow\sqrt{2018}\) là số vô tỉ

12 tháng 7 2018

Giả sử \(\sqrt{2018}\)không phải là số vô tỷ, khi đó :

        \(\sqrt{2018}\)là số hữu tỷ.

\(\Rightarrow\sqrt{2018}=\frac{m}{n}\left(m,n\inℕ^∗\right);\left(m.n\right)=1\)

\(\Rightarrow2018=\left(\frac{m}{n}\right)^2=\frac{m^2}{n^2}\)

\(\Rightarrow2018.n^2=m^2\)

\(\Rightarrow m^2⋮2018\)

\(\Rightarrow m^2⋮2\left(2018⋮2\right)\)

\(\Rightarrow m⋮2\)( Vì 2 là số nguyên tố )

\(\Rightarrow m=2k\left(k\inℕ\right)\)

Do đó : \(2018.n^2=\left(2k\right)^2\)

          \(\Rightarrow2018.n^2=4k^2\)

          \(\Rightarrow1009.n^2=2k^2\)

           \(\Rightarrow1009.n^2⋮2\)

           \(\Rightarrow n^2⋮2\)( vì \(\left(1009,2\right)=1\))

            \(\Rightarrow n⋮2\)( Vì 2 là số nguyên tố )

Như vậy : \(m⋮2;n⋮2\)trái với \(\left(m,n\right)=1\)

Chứng tỏ điều giả sử ko xảy ra.

Vậy \(\sqrt{2018}\)là số vô tỷ

1 tháng 9 2023

help me!

cứu tui zới!

1 tháng 9 2023

tách ra đk

23 tháng 3 2016

tương tự ví dụ 11, trang 22, Sách Nâng cao và phát triển Toán 7,

27 tháng 10 2016

Chứng minh cái này thì đơn giản thôi! 
Mình xin trình bày cách chứng minh mà mình tâm đắc nhất: 
Giả sứ căn 2 là số hữu tỉ=> căn 2 có thể viết dưới dạng m/n.(phân số m/n tối giản hay m,n nguyên tố cùng nhau) 
=>(m/n)^2=2 
=>m^2=2n^2 
=>m^2 chia hết cho 2 
=>m chia hết cho 2 
Đặt m=2k (k thuộc Z) 
=>(2k)^2=2n^2 
=>2k^2=n^2 
=> n^2 chia hết cho 2 
=> n chia hết cho 2. 
Vậy m,n cùng chia hết cho 2 nên chúng không nguyên tố cùng nhau 
=> Điều đã giả sử là sai => căn 2 là số vô tỉ.

2 tháng 7 2015

mk nghĩ thế này

a,b) Ta thấy: không có số nào mũ 2 lên được 15 và 2

=>\(\sqrt{15},\sqrt{2}\) là số vô tỉ

c) ta có: \(\sqrt{2}\) là số vô tỉ

mà Số tự nhiên - số vô tỉ luôn luôn là số vô tỉ

=>đpcm

nha bạn