
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
Mà \(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=2-\dfrac{1}{100}< 2\)
\(\Rightarrow\) \(S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
Vậy \(S< 2\left(đpcm\right).\)
Câu 1 :
Ta có :
\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+..........+\dfrac{1}{100^2}\)
Ta thấy :
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
........................
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Leftrightarrow S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+.......+\dfrac{1}{99.100}\)
\(\Leftrightarrow S< 1+1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Leftrightarrow S< 1+1-\dfrac{1}{100}\)
\(\Leftrightarrow S< 2+\dfrac{1}{100}< 2\)
\(\Leftrightarrow S< 2\rightarrowđpcm\)


Ta có:\(S=\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)+\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\frac{1}{9}\)
\(>\left(\frac{1}{5}+\frac{1}{5}+\frac{1}{5}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+\frac{1}{9}\)
\(=\frac{3}{5}+\frac{3}{8}+\frac{1}{9}=\frac{216+135+40}{360}=\frac{391}{360}>1\)
Lại có:\(S< \left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)+\left(\frac{1}{6}+\frac{1}{6}+\frac{1}{6}\right)+\frac{1}{9}\)
\(=1+\frac{1}{2}+\frac{1}{9}\)
\(< 1+\frac{1}{2}+\frac{1}{2}=2\)
Vậy....

oohhhhhhhhh toán lớp 6 có bài này
\(S=1+\frac{1}{1!}+\frac{1}{2!}+...+\frac{1}{2001!}=1+\frac{1}{1}+\frac{1}{1.2}+...+\frac{1}{1.2.3..2001}\)
\(S=2+\frac{1}{1.2}+\frac{1}{1.2.3}+...+\frac{1}{1.2.3....2001}\)
\(\frac{1}{2!}=\frac{1}{1.2},\frac{1}{3!}< \frac{1}{2.3},..,\frac{1}{2001!}< \frac{1}{2000.2001}\)
\(S< 2+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2000}-\frac{1}{2001}\)
\(S< 2+\frac{1}{1}-\frac{1}{2001}< 2+1=3\left(ĐPCM\right)\)