Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét x là số chẵn thì \(x^4⋮16\)
Xét x là số lẻ thì:
\(x^2:8\)dư 1
\(\Rightarrow x^4=\left(8k+1\right)^2:16\)dư 1
Như vậy mỗi số \(x^4;y^4;z^4;t^4\)chia cho 16 dư 1 hoặc 0
Nên \(x^4+y^4+z^4+t^4\)chia cho 16 có số dư không lớn hơn 5
Mà 2015 chia cho 16 dư 15
Dẫn đến mâu thuẫn
Hay x;y;z;t không tồn tại
Vậy phương trình không có nghiệm nguyên
TH1 : z =2
=> VL
TH2 z le => z^4 dong du 1 mod 4
x^2 dong du 0 hoac 1 mod 4
y^3 dong du 0,1,3 mod 4
=> ko the co so nguyen to x,y,z
Theo đề: \(5^y=6^z-4^x\)
Vì \(y\inℕ\)nên vế trái chắc chắn là số lẻ do đó vế phải cũng lẻ
Mà \(6^z,4^x\)đều là lũy thừa cơ số chẵn do vậy 1 trong 2 \(x,z\)phải bằng \(0\)
Mà \(6^z-4^x=5^y>0\Rightarrow6^z>4^x\)nên \(z\)không thể bằng \(0\)
Do đó \(x=0\)
\(\Rightarrow6^z-5^y=1\)vì các lũy thừa bậc cao của 5 và 6 không thể là các số tự nhiên liên tiếp nên \(y=z=1\)
Vậy nghiệm của phương trình là \(x=0,y=z=1\)
Bạn tham khảo trường hợp \(n=4\) của định lí Fermat cuối cùng.