Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{ax-b}{a}+(a+b+1)x>\frac{2b}{a}\)
<=> \(x-\frac{b}{a}+\left(a+b+1\right)x>\frac{2b}{a}\)
<=> \(\left(a+b+2\right)x>\frac{3b}{a}\)
Giờ biện luận theo a và b thôi
1) \(a+b+c=0\Rightarrow2\left(a+b+c\right)=0\Rightarrow\frac{2\left(a+b+c\right)}{abc}=0\)
\(\Rightarrow M=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(x+y+z\right)}{xyz}\)
\(\Rightarrow M=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}\)
\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Leftrightarrow\left(\frac{x-b-c}{a}-1\right)+\left(\frac{x-c-a}{b}-1\right)+\left(\frac{x-a-b}{c}-1\right)=0\\ \)
\(\Leftrightarrow\left(x-p\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\)
=> x=p=(a+b+c)
ĐKXĐ: \(x\ne a,x\ne b\). Biến đổi phương trình:
\(\frac{x-a}{b}+\frac{x-b}{a}=\frac{b}{x-a}+\frac{a}{x-b}\Leftrightarrow\frac{a\left(x-a\right)+b\left(x-b\right)}{ab}=\frac{b\left(x-b\right)+a\left(x-a\right)}{\left(x-a\right)\left(x-b\right)}\)
\(\Leftrightarrow\left[a\left(x-a\right)+b\left(x-b\right)\right].\left[\frac{1}{ab}-\frac{1}{\left(x-a\right)\left(x-b\right)}\right]=0\)
Giải \(a\left(x-a\right)+b\left(x-b\right)=0\) được \(x=\frac{a^2+b^2}{a+b}\)( thỏa mãn ĐKXĐ)
Giải \(ab=\left(x-a\right)\left(x-b\right)\) được \(x=0\) và \(x=a+b\) ( thỏa mãn ĐKXĐ)
Nhận thấy \(0,a+b,\frac{a^2+b^2}{a+b}\) là 3 nghiệm phân biệt.
2, (trích đề thi học sinh giỏi Bến Tre-1993)
\(a^3+a^2b+ca^2+b^3+ab^2+b^2c+c^3+c^2b+c^2a=a^2\left(a+b+c\right)+b^2\left(a+b+c\right)+c^2\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
mà a+b+c=0 => (a+b+c)(a2+b2+c2)=0
=> đpcm
*bài này tui làm tắt, không hiểu ib
Vừa lm xog bị troll chứ, tuk quá
\(x-a^2x-\frac{b^2}{b^2-x^2}+a=\frac{x^2}{x^2-b^2}\)
\(\Leftrightarrow\frac{x\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}-\frac{a^2x\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}-\frac{b^2\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}+\frac{a\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}=\frac{x^2\left(b^2-x^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}\)
Khử mẫu :
\(\Leftrightarrow2x^3b^2-xb^4-x^5-2a^2x^3b^2+a^2xb^4+a^2x^5-b^2x^2+b^4+2ab^2x^2-ab^4-ax^4=x^2b^2-x^4\)
Tự xử nốt, lm bài này muốn phát điên mất.
Ờm thì đại khái như vầy , dùng thêm hằng cao cấp mới chơi được =))
Link : Bảy hằng đẳng thức đáng nhớ – Wikipedia tiếng Việt
Dùng hằng mở rộng số 4
Ta có :
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(\Leftrightarrow ayz+bxz+cxy=0\) (1)
Lại có :
\(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2=\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1^2=1\) (chỗ này dùng cái skill mở rộng)
<=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{xyc}{abc}+\frac{ayz}{abc}+\frac{bzx}{abc}\right)=1\)
<=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\frac{ayz+bxz+cxy}{abc}=1\)
Thay 1 vào
=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=1\)
1. Trong các phương trình sau, phương trình bậc nhất 1 ẩn là
A. 2/x - 7=0; B. |7x+5)-1=0; C. 8x-9=0
2. điều kiện xác định của phương trình
\(\frac{4}{2x-3}=\frac{7}{3x-5}\)là
A. x khác 3/2. B. x khác5/3; C. x khác 3/2 hoặc 5/3; D. x khác 3/2 và 5/3
1.Pt bậc nhất 1 ẩn:\(8x-9=0\)
2.ĐKXĐ:\(x\ne\frac{3}{2};x\ne\frac{5}{3}\)