\(x^3+y^3+z^3\ge3xyz\)

CMR:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

thừa nhận (1)&(2) "cần c/m"=> giải thích ở một câu khác

\(x^2+y^2+z^2\ge xy+yz+xz\)(1)

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+xz+yz\right)\right]\)(2)

\(\left\{{}\begin{matrix}x+y+z\ge0\\x^2+y^2+z^2-\left(xy+xz+yz\right)\ge0\end{matrix}\right.\)

\(\Rightarrow VP\left(2\right)\ge0\Rightarrow VT\ge0\Rightarrow x^3+y^3+z^3\ge3xyz\Rightarrow dpcm\Leftrightarrow dccm\)

28 tháng 7 2017

Ta có: \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

Áp dụng vào bài

\(A=\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=x^3+y^3+3xy\left(x+y\right)+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Nếu trong tích \(\left(x+y\right)\left(y+z\right)\left(x+z\right)\) có ít nhất 2 thừa số chia hết cho 2 thì tích đó chia hết cho 2

Nếu cả 3 thừa số đều không chia hết cho 2, ta có: \(x+y=2k+1;y+z=2q+1\)

\(\Rightarrow2y+x+z=2k+2q+2\)

\(\Leftrightarrow x+z=2k+2q+2-2y\)

\(\Leftrightarrow x+z=2\left(k+q+1-y\right)\)

Vế phải chia hết cho 2 nên vế trái cũng chia hết cho 2

Vậy: \(\left(x+y\right)\left(y+z\right)\left(x+z\right)⋮2\forall x,y,z\in Z\)

\(\Rightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)⋮6\forall x,y,z\in Z\)

Vậy: \(A⋮6\forall x,y,z\in Z\)

17 tháng 8 2017

Câu a :

\(VT=\) \(\left(x-1\right)\left(x^2+x+1\right)=x^3-1^3=VP\)

Câu b :

\(VT=\)\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4=VP\)

Tương tự bạn khai triển là ra nhé

17 tháng 8 2017

a) \(\left(x-1\right)\left(x^2+x+1\right)\)

=\(x^3+x^2+x-x^2-x-1=x^3-1\)

\(\RightarrowĐPCM\)

b)\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)

\(=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+xy^3-y^4=x^4-y^4\)

17 tháng 11 2016

\(x^3+y^3+z^3=3xyz\)

\(x^3+y^3+z^3-3xyz=0\)

\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)

\(x^2+y^2+z^2-xy-xz-yz=0\left(x+y+z\ne0\right)\)

\(2\times\left(x^2+y^2+z^2-xy-xz-yz\right)=0\times2\)

\(2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)

\(x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2=0\)

\(\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2=0\)

\(\left[\begin{array}{nghiempt}x-y=0\\x-z=0\\y-z=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=y\\x=z\\y=z\end{array}\right.\)

x = y = z

\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{x}{z}\right)\)

\(=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)\)

\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)\)

\(=2^3\)

\(=8\)

1 tháng 3 2017

Làm sao để ra được dòng thứ 3 ak??

9 tháng 7 2018

a/\(\left(x-1\right)\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1=x^3-1\left(đpcm\right)\)

b/ \(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-x^3y+x^3y-x^2y^2+x^2y^2-xy^3+xy^3-y^4=x^4-y^4\left(đpcm\right)\)

c/ \(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)=x^2+xy+xz+y^2+xy+yz+z^2+zx+yz=x^2+y^2+z^2+2xy+2yz+2zx\left(đpcm\right)\)

d/ \(\left(x+y+z\right)^3=\left(x+y\right)^3+3\left(x+y\right)^2z+3z^2\left(x+y\right)+z^3\)

\(=\left(x+y\right)^3+3z\left(x^2+2xy+y^2\right)+3z^2\left(x+y\right)+z^3\)

\(=x^3+3x^2y+3xy^2+y^3+3x^2z+6xyz+3y^2z+3z^2x+3yz^2+z^3\)

\(=x^3+y^3+z^3+3xyz+3x^2y+3xy^2+3x^2z+3y^2z+3y^2x+3yz^2+3xyz\)

\(=x^3+y^3+z^3+\left(x+z\right)\left(3xy+3xz+3y^2+3yz\right)\)

\(=x^3+y^3+z^3+\left(x+z\right)\left[3x\left(y+z\right)+3y\left(y+z\right)\right]\)

\(=x^3+y^3+z^3+\left(x+z\right)\left(y+z\right)\left(3x+3y\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\) (đpcm)

9 tháng 7 2018

a, Xét vế trái ta có:

(x-1)(x^2+ x+1)=x^3+ x^2+ x- x^2- x-1

=x^3+ (x^2- x^2)+(x-x)-1

=x^3-1

Vậy...

b,Xét vế trái ta có:(x^3+ x^2y+ xy^2+ y^3)(x-y)

=x^4- x^3y+ x^3y- x^2- y^2+ x^2y^2- xy^3+ xy^3- y^4

=x^4-y^4

Vậy ........

c, Xét vế trái ta có:

(x+y+z)^2=(x+y+z)(x+y+z)

=x^2+ xy+ xz+ yx+y^2+ yz+ zx+ zy+ z^2

=x^2+ y^2+ z^2+ 2xy+ 2xz+ 2yz

Vậy...............

d, Xé vế trái ta có:

(x+y+x)^3=(x+y+z)(x+y+z)(x+y+z)(x+y+z)

=(x^2+y^2+z^2+2xy+2xz+2yz)(x+y+z)

=x^3+ xy^2+ xz^2+ 2x^2y+ 2xyz+ 2x^2z+ x^2y+ y^3+ yz^2+2xy^2+ 2y^2z+z^3+ 2xyz+ x^2z+ y^2z+2xyz+ 2yz^2+ 2xz^2

=x^3+ 3xy^2+ 6xy+ 3x^2y+3xz^2+ 3x^2z+ 3yz^2+ y^3z^3 (1)

Xét vế phải ta có:x^3+ y^3+ z^3+ 3(x+y)(x+y)(y+z)

=x^3+ y^3+ z^3+ 3(xy+ xz+ y^2+ yz)(z+x)

=x^3+ y^3+ z^3+ 3(xyz+ xz^2+ y^2z+ yz^2+ x^2y+ x^2z+ xy^2+xyz)

=x^2+ y^3+ z^3 +3(2xyz+ xz^2+ y^2z+ yz^2+x^2y+x^2z+ xy^2)

=x^3+ y^3+ z^3+6xyz+ 3xz^2+ 3y^2z+3yz^2+ 3x^2y+3x^2z+3xy^2(2)

Từ (1) và (2)=>.......

5 tháng 8 2017

5) a) Ta có: \(a< b+c\)

\(\Rightarrow a^2< ab+ac\)

Tương tự: \(b^2< ba+bc\)

\(c^2< ca+cb\)

Cộng từng vế các BĐT vừa chứng minh, ta được đpcm

b) Ta có: \(\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\)

\(\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\)

\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)

Nhân từng vế các BĐT trên, ta được

\(\left[\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\right]^2\le\left(abc\right)^2\)

Các biểu thức trong ngoặc vuông đều dương nên ta suy ra đpcm

AH
Akai Haruma
Giáo viên
5 tháng 8 2017

Bài 5:

a)

Ta có \(a^2+b^2+c^2<2(ab+bc+ac)\)

\(\Leftrightarrow a(b+c-a)+b(a+c-b)+c(a+b-c)>0\)

Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác nên

\(b+c-a,a+b-c,c+a-b>0\)

b) Áp dụng BĐT Am-Gm:

\((a+b-c)(b+c-a)\leq \left ( \frac{a+b-c+b+c-a}{2} \right )^2=b^2\)

\((a+b-c)(c+a-b)\leq \left (\frac{a+b-c+c+a-b}{2}\right)^2=a^2\)

\((b+c-a)(a+c-b)\leq \left ( \frac{b+c-a+a+c-b}{2} \right )^2=c^2\)

Nhân theo vế :

\(\Rightarrow [(a+b-c)(b+c-a)(c+a-b)]^2\leq a^2b^2c^2\)

\(\Rightarrow (a+b-c)(b+c-a)(c+a-b)\leq abc\)

Do đó ta có đpcm

c)

\(a^3+b^3+c^3+2abc< a^2(b+c)+b^2(c+a)+c^2(a+b)\)

\(\Leftrightarrow a(ab+ac-a^2-bc)+b(ab+bc-b^2-ac)+c(ca+cb-c^2)>0\)

\(\Leftrightarrow a(a-c)(b-a)+b(b-c)(a-b)+c^2(a+b-c)>0\)

\(\Leftrightarrow (a-b)(b-a)(b+a-c)+c^2(b+a-c)>0\)

\(\Leftrightarrow (b+a-c)[c^2-(a-b)^2]>0\)

Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác thì \(b+a>c, c>|a-b|\)

Do đó ta có đpcm.

Bài 2 1)Phân tích đa thức thành nhân tử \(x^2-2xy+y^2-4x+4y-5\)2)Tìm đa thức dư khi chia \(x^{20}+x^{10}+x^5+1\)cho \(x^2-1\)Bài 3 1) Giari phương trình \(\left(x^2-4x\right)^2+2.\left(x-2\right)^2=4^3\)b)\(\frac{x^2+8x+20}{x+4}+\frac{x^2+12x+42}{x+6}=\frac{x^2+4x+6}{x+2}+\frac{x^2+16x+72}{x+8}\)2) tìm các số nguyen x,y thỏa mãn \(2x^2+3y^2+4x=19\)Bài 4 Cho hình vuông ABCD và điểm H thuộc BC , điểm H không trùng B và C .  Trên nửa mặt...
Đọc tiếp

Bài 2 

1)Phân tích đa thức thành nhân tử \(x^2-2xy+y^2-4x+4y-5\)

2)Tìm đa thức dư khi chia \(x^{20}+x^{10}+x^5+1\)cho \(x^2-1\)

Bài 3 

1) Giari phương trình \(\left(x^2-4x\right)^2+2.\left(x-2\right)^2=4^3\)

b)\(\frac{x^2+8x+20}{x+4}+\frac{x^2+12x+42}{x+6}=\frac{x^2+4x+6}{x+2}+\frac{x^2+16x+72}{x+8}\)

2) tìm các số nguyen x,y thỏa mãn \(2x^2+3y^2+4x=19\)

Bài 4 

Cho hình vuông ABCD và điểm H thuộc BC , điểm H không trùng B và C .  Trên nửa mặt phẳng bờ BC không chưa mình vuông ABCD dựng hình vuông CHIK 

1) CMR DH vuông góc BK

2) Gọi M là giao điểm của DH và BK ,  N là giao điểm của  KH và BD . CMR DN.BD+KM.BK=DK^2

3) CMR \(\frac{BH}{HC}+\frac{DH}{HM}+\frac{KH}{HN}>6\)

Bài 5 

1 ) Tìm GTNN của \(P=xy.\left(x+4\right).\left(y-2\right)+6x^2+5y^2+24x-10y+2043\)

2) Cho các số x,y,z không âm thỏa mã 

x+y+z=1 . CMR

\(x+2y+z\ge4.\left(1-x\right).\left(1-y\right).\left(1-z\right)\)

 

2
17 tháng 4 2019

Bài 2

A/  \(x^2-2xy+y^2-4x+4y-5\)

\(=\left(x^2-2xy+y^2\right)-\left(4x-4y\right)-5\)

\(=\left(x-y\right)^2-4\left(x-y\right)-5\)

\(=\left(x-y\right)\left(x-y-4\right)-5\)

b/ trên máy tính đâu có đặt cột dọc được :v chịu khó tính nháp là ra xD

17 tháng 4 2019

Bài 3

1/a \(\left(x^2-4x\right)^2+2\left(x-2\right)^2=4^3.\)

\(\left(x^2-4x\right)^2+2\left(x^2-4x+4\right)=64\)

Cho \(x^2-4x\) là S

\(\Rightarrow S^2+2\left(S+4\right)=64\)

\(\Rightarrow S^2+2S+8=64\)

\(\Rightarrow S^2+2S=64-8\)

\(\Rightarrow S^2+2S=56\)

Tính ko ra:v đề có sai ko?

2/  \(2x^2+3y^2+4x=19\)

\(\Rightarrow2x^2+4x=19-3y^2\)

\(\Rightarrow2x^2+4x=21-2-3y^2\)

\(\Rightarrow2x^2+4x+2=21-3y^2\)

\(\Rightarrow2\left(x^2+2x+1\right)=21-3y^2\)

\(\Rightarrow2\left(x+1\right)^2=21-3y^2\)

\(\Rightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\)

Từ đây xét tiếp để ra kq :v