Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\)\(\frac{a}{b}=\frac{c}{d}\)=> \(ad=bc\)=> \(ad+ab=bc+ab\)=> a x ( b + d) = b x ( a + c )
=> \(\frac{a}{b}=\frac{a+c}{b+d}\left(đpcm\right)\)
\(b.\)\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)( Áp dụng tính chất dãy tỉ số bằng nhau )
=>\(\frac{a}{b}=\frac{c}{a}\)=> \(a^2=bc\)( đpcm)
2. ....( đầu bài)
ta có:
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}=>\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
AD t/ c dãy tỉ số bằng nhau ta có:
.\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2a+\left(b-b\right)}{2c+\left(d-d\right)}=\frac{2a}{2c}=\frac{a}{c}\)(1)
. \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2b}{2d}=\frac{b}{d}\)(2)
Từ (1) và (2) => \(\frac{a}{c}=\frac{b}{d}\)(đpcm)
có \(a^2=bc=>a.a=bc=>\frac{a}{c}=\frac{b}{a}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}=>\frac{a+b}{a-b}=\frac{c+a}{c-a}=>đpcm\)
a2 = b.c => a.a = b.c = \(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}=>\frac{a+b}{a-b}=\frac{c+a}{c-a}\)điều cần minh chứng
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
<=> (a+b)(c-a)=(a-b)(c+a)
<=> ac+bc-a2-ab=ac-bc+a2-ab
<=> ac+bc-ab-ac+bc+ab=a2+a2
<=> (ac-ac) + (bc+bc) + (ab-ab) = 2a2
<=> 2bc=2a2
=> a2 = bc (đpcm)
ta có: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\left(a+b\right)\left(c-a\right)=\left(a-b\right)\left(a+a\right)\)\(ac-a^2+bc-ab==ac+a^2-bc-ac\)
\(\Rightarrow2a^2=2bc\)
\(\Rightarrow a^2=bc\)
đpcm
ai bt thì lm giúp tôi còn những ng ko bt đừng có xía vào, phiền lắm
TA CÓ \(\frac{a}{b}=\frac{c}{d}=\frac{p}{q}=\frac{am}{bm}=\frac{nc}{nd}=\frac{ep}{eq}\)
ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU TA CÓ
\(\frac{a}{b}=\frac{c}{d}=\frac{p}{q}=\frac{ma}{mb}=\frac{nc}{nd}=\frac{ep}{eq}=\frac{ma+nc+ep}{mb+nd+eq}\)(ĐPCM)
ADTC dãy tỉ số bằng nhau ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\hept{\begin{cases}a=b\cdot1=b\\b=c\cdot1=c\\c=a\cdot1=a\end{cases}\Leftrightarrow a=b=c}\)
Giả sử \(a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}\)
Đặt \(\frac{a}{b}=\frac{c}{a}=d\Rightarrow\hept{\begin{cases}a=db\\c=da\end{cases}}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
\(\Leftrightarrow\frac{db+b}{db-b}=\frac{da+a}{da-a}\)
\(\Leftrightarrow\frac{b\left(d+1\right)}{b\left(d-1\right)}=\frac{a\left(d+1\right)}{a\left(d-1\right)}\)
\(\Leftrightarrow\frac{d+1}{d-1}=\frac{d+1}{d-1}\left(đpcm\right)\)
=))
Ta có : a2 =bc
=>\(\frac{a}{b}=\frac{c}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
=> \(\frac{a}{b}=\frac{c}{a}\)=\(\frac{c-a}{a-b}=\frac{c+a}{a+b}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)