K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2022

z,\:x^3+y^3+x\cdot \:3=3xyz\quad :\quad z=\frac{x^3+y^3+3x}{3xy};\quad \:x\ne \:0

x^3+y^3+x\cdot \:3=3xyz

\frac{3xyz}{3xy}=\frac{x^3}{3xy}+\frac{y^3}{3xy}+\frac{x\cdot \:3}{3xy};\quad \:x\ne \:0

z=\frac{x^3+y^3+3x}{3xy};\quad \:x\ne \:0

a: Xét ΔABH vuông tại H có HF là đường cao ứng với cạnh huyền AB

nên \(AF\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)

2 tháng 6 2018

Chị tham khảo bài giải dưới đây nhé:

x^3/(3y+1) +(3y+1)/16+1/4 \(\ge\)3 . căn bậc 3\(\sqrt[]{\frac{x^3.\left(3y+1\right).1}{\left(3y+1\right).16.4}}\)\(\ge\)3x/4(BĐT cauchy) (1)

y^3/(3z+1)+(3z+1)/16+1/4 \(\ge\)3. căn bậc 3\(\sqrt[]{\frac{z^3.\left(3z+1\right).1}{\left(3z+1\right).16.4}}\)\(\ge\)3y/4 (BĐT cauchy) (2)

z^3/(3x+1) +(3x+1)/16 +1/4 \(\ge\) 3. \(\sqrt[3]{\frac{z^3.\left(3x+1\right).1}{\left(3y+1\right).16.4}}\)\(\ge\)3z/4(BĐT cauchy) (3)

cộng theo vế của các bất đảng thức (1),(2),(3) ta có BĐT tương đương 

   P+3(x+y+z)/16+3/16 \(\ge\)3(x+y+z)/4

\(\Leftrightarrow\)P+3/16\(\ge\)3(x+y+z)/4 -3(x+y+z)/16=9(x+y+z)/16\(\ge\)9/16

\(\Rightarrow\)P+3/16\(\ge\)9/16

\(\Leftrightarrow\)P\(\ge\)3/16

vậy min P=3/16 . Dấu  "=" xảy ra khi và chỉ khi x=y=z=1

Chị Linh Mai ơi em không học lớp 9 nhưng bài này có thể em biết làm . Và bài giải trên chỉ mang tính tham khảo thôi nha chị , chưa chắc đúng đâu . Chị cần tham khỏa các bài khác coi đúng không nhé! Em chúc chị mai thi tuyển sinh làm bài tốt nha!

28 tháng 5 2020

bạn kia giải sai rồi

13 tháng 1 2018

hoa mắt

9 tháng 3 2017

2 chữ số là x và y

Số đó là 10x + y

Ta có:

10x + y = 4(x+y) + 3

10x + y = 3xy + 5

<=>

6x - 3y = 3

10x + y = 3xy + 5

<=>

2x - y = 1

10x + y = 3xy + 5

<=>

y = 2x - 1

10x + y = 3xy + 5

<=>

y = 2x - 1

10x + 2x - 1 = 3x(2x - 1) + 5

<=>

y = 2x - 1

12x - 1 = 6x2 - 3x + 5

<=>

y = 2x - 1

6x2 -15x + 6 = 0

=>

y = 2x - 1

x = 2 hoặc x = 1/2 (loại)

=>

x = 2

y = 3

Vậy số đó là 23

20 tháng 4 2017

\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}=\frac{x^4}{xy}+\frac{y^4}{yz}+\frac{z^4}{zx}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx}\ge\frac{\left(xy+yz+zx\right)^2}{xy+yz+zx}=xy+yz+zx\)

20 tháng 4 2017

Mơn alibaba Nguyen nha nhung có thể chỉ rõ ra b áp dụng bất đẳng thức nào đc k

17 tháng 1 2017

Bài 1:Áp dụng C-S dạng engel

\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)

\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)

2 tháng 8 2017

x+√(x^2+3)=3/(y+√(y^3))=3(y-√(y^2+3)/-a(trục căn thức)

x+√(x^2+3)=-y+√(y^2+3) suy ra x+y=√(y^2+3)-√(x^2+3)(1)

Tương tự,x+y=√(x^2+3)-√(y^2+3)(2)

Cộng (1),(2) theo vế suy ra 2(x+y)=0 suy ra x+y=0

hay E=0.

Vậy E=0

2 tháng 8 2017

nhân \(-x+\sqrt{x^2+3}\)  vào 2 vế ta đc : \(\left(-x^2+x^2+3\right)\left(y+\sqrt{y^2+3}\right)=\)\(3\left(-x+\sqrt{x^2+3}\right)\)
                         <=>  \(y+\sqrt{y^2+3}=-x+\sqrt{x^2+3}\)<=> \(y+\sqrt{y^2+3}+x-\sqrt{x^2+3}=0\)__(1)___
làm tương tự ta đc \(\left(-y+\sqrt{y^2+3}\right)\left(x+\sqrt{x^2+3}\right)\)\(=3\left(-y+\sqrt{y^2+3}\right)\)
                          <=> \(x+\sqrt{x^2+3}=-y+\sqrt{y^2+3}\)<=> \(x+\sqrt{x^2+3}+y-\sqrt{y^2+3}=0\)__(2)__
       lấy (1) + (2) => 2(x+y) =0 => x+y=0        
   lấy 

Bạn chỉ cần hiểu là căn bậc hai số học của là một số x sao cho \(x^2=a\) và \(x\ge0\) thôi

13 tháng 7 2021

Thế bạn ơi