Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
20abc < 30(ab + bc + ac) < 21abc <=> 2/3 < (ab + bc + ac) / abc < 7/10
<=> 2/3 < 1/a + 1/b + 1/c < 7/10
Gọi A là số nhỏ nhất, C là số lớn nhất trong 3 số nguyên tố a,b,c và B là số còn lại.Ta có
2/3 < 1/A + 1/B + 1/C < 7/10.Có các TH sau :
a) A = 2
..+B = 3 hoặc 5.Khi đó 1/A + 1/B +1/C > 7/10 (loại)
..+B = 7.Khi đó 1/A + 1/B = 1/2 + 1/7 = 9/14.Do đó 2/3 - 9/14 < 1/C < 7/10 - 9/14 hay 1/42 < 1/C < 2/35 => 17,5 < C < 42.Vì C là số nguyên tố nên C thuộc {19; 23; 29; 31; 37; 41}
..+B = 11.Khi đó 1/A + 1/B = 13/22.Do đó 2/3 - 13/22 < 1/C < 7/10 - 13/22 hay 5/66 < 1/C < 6/55 => 55/6 < C < 66/5.Vì C là số nguyên tố và A,B,C phân biệt nên C = 13
..+B >= 13.Khi đó 1/A + 1/B + 1/C <= 1/2 + 1/13 + 1/17 < 2/3 (loại)
b) A = 3
..+B = 5.Khi đó 1/A + 1/B = 8/15.Do đó 2/3 - 8/15 < 1/C < 7/10 - 8/15 hay 2/15 < 1/C < 1/6 => 6 < C < 15/2 => C =7
..+B >= 7.Khi đó 1/A + 1/B + 1/C <= 1/3 + 1/7 + 1/11 < 2/3 (loại)
c) A >= 5
...Khi đó 1/A + 1/B + 1/C <= 1/5 + 1/7 + 1/11 < 2/3 (loại)
Tóm lại có các TH sau
A = 2, B = 7, C = 19
A = 2, B = 7, C = 23
A = 2, B = 7, C = 29
A = 2, B = 7, C = 31
A = 2, B = 7, C = 37
A = 2, B = 7, C = 41
A = 2, B = 11, C = 13
A = 3, B = 5, C = 7
Ứng với mỗi TH lại có thể tìm được 6 bộ 3 số nguyên tố a,b,c khác nhau.Vd ứng với TH đầu tiên ta có
(a,b,c) = (2,7,19); (2,19,7); (7,2,19); (7,19,2); (19,2,7); (19,7,2)
Vậy có tất cả 48 bộ 3 số nguyên tố a,b,c thỏa mãn điều kiện đầu bài .
Ta có
\(20abc< 30\left(ab+bc+ca\right)< 21abc\)
\(\Leftrightarrow\frac{2}{3}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< \frac{7}{10}\)
Không mất tính tổng quát ta giả sử \(a< b< c\)
\(\Rightarrow\frac{2}{3}< \frac{3}{a}\Rightarrow a=\left(2,3\right)\)(vì a nguyên tố)
Thế lần lược các giá trị a vào rồi làm tương tự như bước trên sẽ tìm được b, c (nhớ loại giá trị không đúng nhé)
Vai trò a, b, c là như nhau nên các giá trị a, b, c có thể đổi vị trí cho nhau nên chú ý để không bỏ xót nghiệm nhé
c chia hết cho d => ca,cb chia hết cho d
mà ab+bc+ca chia hết cho d
\(\Rightarrow\)ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
vậy: giả thiết đưa ra là sai
Kết luận: abc và ab+bc+ca nguyên tố cùng nhau
jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
Ta có: \(\frac{1}{2abc}+\frac{4}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{1}{2}\ge3\sqrt[3]{\frac{4}{4abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
\(\Leftrightarrow\frac{1}{2abc}+\frac{4}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{1}{2}\ge\frac{3}{\sqrt[3]{\left(ab+bc\right)\left(bc+ca\right)\left(ca+ab\right)}}\)
\(\Rightarrow\frac{1}{2abc}+\frac{4}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\frac{1}{2}\ge\frac{3}{\frac{\left(ab+bc\right)+\left(bc+ca\right)+\left(ca+ab\right)}{3}}\)
\(\Leftrightarrow\frac{1}{2abc}+\frac{4}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{9}{2\left(ab+ac+bc\right)}-\frac{1}{2}=1\)
Ta lại có: \(3=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\frac{1}{abc}\ge1\Rightarrow\frac{1}{2abc}\ge\frac{1}{2}\)
Cộng vế với vế ta có đpcm
Dấu "=" xảy ra khi a=b=c=1