Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=n\left(n-1\right)\left(n+1\right)\cdot n\)
TH1: n=2k
n(n-1)(n+1) chia hết cho 6 với mọi n
=>A chia hết cho 12
TH2: n=2k+1
\(A=\left(2k+1\right)\cdot\left(2k+1\right)\cdot2k\cdot\left(2k+2\right)\)
\(=4k\left(k+1\right)\left(2k+1\right)\left(2k+1\right)⋮4\)
mà 2k(2k+1)(2k+2) chia hết cho 6
nen A chia hết cho 12
d: Vì 5 là số nguyên tố nên \(n^5-n⋮5\left(1\right)\)
\(A=n^5-n=n\left(n^4-1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮6\left(2\right)\)
Từ (1) và (2) suy ra A chia hết cho 30
Câu hỏi của I lay my love on you - Toán lớp 8 - Học toán với OnlineMath giống nè,khác đk n thôi
\(n^5-n=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left[\left(n-2\right)\left(n+2\right)+5\right]\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Vì n ; n+1 ; n-1 ; n+2 ; n-2 là 5 số nguyên liên tiếp
=> n(n-1)(n+1)(n-2)(n+2) chia hết cho 2;3;5
Mà 2;3;5 đôi một nguyên tố cùng nhau
=> n(n-1)(n+1)(n-2)(n+2) chia hết cho 2.3.5=30 (1)
Vì n ; n-1 ; n+1 là 3 số nguyên liên tiếp
=> n(n-1)(n+1) chia hết cho 2 và 3
Mà (2;3) = 1
=> n(n-1)(n+1) chia hết cho 2.3=6
Lại có ( 5;6) = 1
=> n(n-1)(n+1) chia hết cho 5.6=30 (2)
Từ (1) và (2) => n(n-1)(n+1)(n-2)(n+2) + 5n(n-1)(n+1) chia hết cho 30
hay n5 - n chia hết cho 30
Vậy ..
Bài 1:
Nếu $n$ không chia hết cho $7$ thì:
\(n\equiv 1\pmod 7\Rightarrow n^3\equiv 1^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)
\(n\equiv 2\pmod 7\Rightarrow n^3\equiv 2^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)
\(n\equiv 3\pmod 7\Rightarrow n^3\equiv 3^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)
\(n\equiv 4\equiv -3\pmod 7\Rightarrow n^3\equiv (-3)^3\equiv 1\pmod 7\Rightarrow n^3-1\vdots 7\)
\(n\equiv 5\equiv -2\pmod 7\Rightarrow n^3\equiv (-2)^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)
\(n\equiv 6\equiv -1\pmod 7\Rightarrow n^3\equiv (-1)^3\equiv -1\pmod 7\Rightarrow n^3+1\vdots 7\)
Vậy \(n^3-1\vdots 7\) hoặc \(n^3+1\vdots 7\)
b)
Đặt \(A=mn(m^2-n^2)(m^2+n^2)\)
Nếu $m,n$ có cùng tính chẵn lẻ thì \(m^2-n^2\) chẵn, do đó \(A\vdots 2\)
Nếu $m,n$ không cùng tính chẵn lẻ, có nghĩa trong 2 số $m,n$ tồn tại một số chẵn và một số lẻ, khi đó \(mn\vdots 2\Rightarrow A\vdots 2\)
Tóm lại, $A$ chia hết cho $2$
---------
Nếu trong 2 số $m,n$ có ít nhất một số chia hết cho $3$ thì \(mn\vdots 3\Rightarrow A\vdots 3\)
Nếu cả hai số đều không chia hết cho $3$. Ta biết một tính chất quen thuộc là một số chính phương chia $3$ dư $0$ hoặc $1$. Vì $m,n$ không chia hết cho $3$ nên:
\(m^2\equiv n^2\equiv 1\pmod 3\Rightarrow m^2-n^2\vdots 3\Rightarrow A\vdots 3\)
Vậy \(A\vdots 3\)
-----------------
Nếu tồn tại ít nhất một trong 2 số $m,n$ chia hết cho $5$ thì hiển nhiên $A\vdots 5$
Nếu cả 2 số đều không chia hết cho $5$. Ta biết rằng một số chính phương khi chia $5$ dư $0,1,4$. Vì $m,n\not\vdots 5$ nên \(m^2,n^2\equiv 1,4\pmod 5\)
+Trường hợp \(m^2,n^2\) cùng số dư khi chia cho $5$\(\Rightarrow m^2-n^2\equiv 0\pmod 5\Rightarrow m^2-n^2\vdots 5\Rightarrow A\vdots 5\)
+Trường hợp $m^2,n^2$ không cùng số dư khi chia cho $5$
\(\Rightarrow m^2+n^2\equiv 1+4\equiv 0\pmod 5\Rightarrow m^2+n^2\vdots 5\Rightarrow A\vdots 5\)
Tóm lại $A\vdots 5$
Vậy \(A\vdots (2.3.5)\Leftrightarrow A\vdots 30\) (do $2,3,5$ đôi một nguyên tố cùng nhau)
Ta có đpcm.
Để (2^n-1);7 thì nó phải thuộc U(7) =1:-1;7;-7
2^n-1 | 1 | -1 | 7 | -7 |
n | X | X | 3 | X |
Vậy n=3 thì (2^n-1);7
Lời giải:
Ta có:
\(x^{8n}+x^{4n}+1=(x^{4n})^2+2.x^{4n}+1-x^{4n}\)
\(=(x^{4n}+1)^2-x^{4n}=(x^{4n}+1+x^{2n})(x^{4n}+1-x^{2n})\)
Xét \(x^{4n}+1+x^{2n}=(x^{2n})^2+2.x^{2n}+1-x^{2n}=(x^{2n}+1)^2-x^{2n}\)
\(=(x^{2n}+1+x^n)(x^{2n}+1-x^n)\)
Do đó:
\(x^{8n}+x^{4n}+1=(x^{4n}+1-x^{2n})(x^{2n}+1+x^n)(x^{2n}+1-x^n)\)
\(\Rightarrow x^{8n}+x^{4n}+1\vdots x^{2n}+x^n+1\) (đpcm)
b)
Sửa đề: \(x^{3m+1}+x^{3n+2}+1\vdots x^2+x+1\)
Đặt \(A=x^{3m+1}+x^{3n+2}+1\)
\(\Leftrightarrow A=x(x^{3m}-1)+x+x^2(x^{3n}-1)+x^2+1\)
\(\Leftrightarrow A=x[ (x^3)^m-1]+x^2[(x^3)^n-1]+(x^2+x+1)\)
Khai triển:
\((x^3)^m-1=(x^3)^m-1^m=(x^3-1).T=(x-1)(x^2+x+1)T\)
(đặt là T vì phần biểu thức đó không quan trọng)
\(\Rightarrow (x^3)^m-1\vdots x^2+x+1\)
Tương tự, \((x^3)^n-1\vdots x^2+x+1\)
Do đó, \(A=x(x^{3m}-1)+x^2(x^{3n}-1)+x^2+x+1\vdots x^2+x+1\)
Ta có đpcm.
a: \(A=\left(n^2+n-1-1\right)\left(n^2+n-1+1\right)\)
\(=\left(n^2+n-2\right)\left(n^2+n\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n-1\right)\) là tích của bốn số nguyên tiếp
nên A chia hết cho 24
b: \(A=n^5-n=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮6\)(1)
Vì 5 là số nguyên tố nên \(n^5-n⋮5\left(2\right)\)
Từ (1) và (2) suy ra A chia hết cho 30
c: Vì 7 là số nguyên tố
nên \(n^7-n⋮7\)
n5 - n = n(n4-1)= n(n2-1)(n2+1)= n(n-1)(n+1)(n2-4+5)= n(n-1)(n+1)(n2-4)+5n(n-1)(n+1)= n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1) (#)
Vì n(n-1)(n+1)(n-2)(n+2)= (n-2)(n-1)n(n+1)(n+2) là 5 số tự nhiên liên tiếp =)) chia hết cho 5 (1)
và 5n(n-1)(n+1) có 5chia hết cho 5 nên =)) chia hết cho 5 (2)
Từ (1) và (2) =)) (#) chia hết cho 5
Vậy n5-n chia hết cho 5