Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = n 4 – 2 n 3 – n 2 +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó A ⋮ 24 .
Để chia \(n^4-3n^3+n^2-3n+1\) cho \(n^2+1\) có giá trị nguyên
⇔ \(n^4-3n^3+n^2-3n+1\) \(⋮n^2+1\)
⇔ \(1⋮n^2+1\)
\(\Leftrightarrow n^2+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
n2 + 1 | 1 | -1 |
n |
0 | ( loại ) |
a) Phân tích 15 n + 15 n + 2 = 113.2. 15 n .
b) Phân tích n 4 – n 2 = n 2 (n - 1)(n +1).
c) C = mn(m^4-n^4)
* nếu m, hoặc n có số chia hết cho 5 => C chia hết cho 5
Xét m và n đều không chia hết cho 5, từ lí thuyết trên ta có:
m^4 chia 5 dư 1 và n^4 chia 5 dư 1 => (m^4 - n^4) chia 5 dư 1-1 = 0
tóm lại ta có C chia hết cho 5
* C = mn(m^4-n^4) = mn(m²-n²)(m²+n²)
nếu m hoặc n có số chẳn => C chia hết cho 2
nếu m và n cùng lẻ => m² và n² là hai số lẻ => m²-n² chẳn
tóm lại C chia hết cho 2
* nếu m, n có số chia hết cho 3 => C chia hết cho 3
nếu m và n đều không chia hết cho 3, từ lí thuyết trên ta có:
m² và n² chia 3 đều dư 1 => m²-n² chia hết cho 3
tóm lại C chia hết cho 3
Thấy C chia hết cho 5, 2, 3 là 3 số nguyên tố
=> C chia hết cho 5*2*3 = 30
e) E = 2n(16-n^4) = 2n(1-n^4 + 15) = 2n(1-n^4) + 30n = E' + 30n
từ câu d ta đã cứng mình D = n(n^4-1) chia hết cho 30
=> n(1-n^4) = -n(n^4-1) chia hết cho 30 => E' chia hết cho 30
=> E = E' + 30n chia hết cho 30
Nguồn: https://vn.answers.yahoo.com/question/index?qid=20100110182409AA4HkM5
Ta có: \(n^5+n^4+1\)
\(=n^5-n^3+n^2+n^4-n^2+n+n^3-n+1\)
\(=n^2\left(n^3-n+1\right)+n\left(n^3-n+1\right)+\left(n^3-n+1\right)\)
\(=\left(n^3-n+1\right)\left(n^2+n+1\right)\)
Do \(n^5+n^4+1\) là số nguyên tố nên: \(\left[{}\begin{matrix}n^3-n+1=1\\n^2+n+1=1\end{matrix}\right.\) trong hai số phải có 1 số là 1 và số còn lại là số nguyên tố:
TH1: \(n^3-n+1=1\)
\(\Leftrightarrow n^3-n=0\)
\(\Leftrightarrow n\left(n^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}n=0\\n=1\\n=-1\end{matrix}\right.\)
Với
\(n=0\Rightarrow0^5+0^4+1=1\) (loại)
\(n=1\Rightarrow1^5+1^4+1=3\) (nhận)
\(n=-1\Rightarrow\left(-1\right)^5+\left(-1\right)^4+1=1\) (loại)
TH1: \(n^2+n+1=1\)
\(\Leftrightarrow n^2+n=0\)
\(\Leftrightarrow\left[{}\begin{matrix}n=0\\n=-1\end{matrix}\right.\left(\text{loại}\right)\)
Vậy \(n=1\) là số thỏa mãn để \(n^5+n^4+1\) là số nguyên tố
a: \(A=n\left(n-1\right)\left(n+1\right)\cdot n\)
TH1: n=2k
n(n-1)(n+1) chia hết cho 6 với mọi n
=>A chia hết cho 12
TH2: n=2k+1
\(A=\left(2k+1\right)\cdot\left(2k+1\right)\cdot2k\cdot\left(2k+2\right)\)
\(=4k\left(k+1\right)\left(2k+1\right)\left(2k+1\right)⋮4\)
mà 2k(2k+1)(2k+2) chia hết cho 6
nen A chia hết cho 12
d: Vì 5 là số nguyên tố nên \(n^5-n⋮5\left(1\right)\)
\(A=n^5-n=n\left(n^4-1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮6\left(2\right)\)
Từ (1) và (2) suy ra A chia hết cho 30