K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
17 tháng 11 2020

\(P=n^2+n+2=n\left(n+1\right)+2\)

- nếu một trong 2 số \(n\)và \(n+1\)có một số chia hết cho \(3\)thì \(P\)chia \(3\)dư \(2\).

- nếu không số nào trong 2 số \(n\)và \(n+1\)chia hết cho \(3\)thì \(P\equiv2+2\left(mod 3\right)\equiv1\left(mod 3\right)\)

Vậy ta có đpcm. 

15 tháng 9 2016

CMR : a)n(n^2+12)+(2_ngày)(n^2_3n+1)(n^2_3n+1)+8 chia hết cho 5 với mọi n thuộc Z

b)n^5_n chia hết cho 30

29 tháng 11 2019

Ta có: 30=5.6, mà (5;6)=1 nên ta chứng minh n5-n chia hết cho 5 và 6

+) n5-n=n(n4-1)=n(n2-1)(n2+1)=n(n-1)(n+1)(n2-4+5)=n(n-1)(n+1)(n2-4)+5n(n-1)(n+1)

                                                                                  =(n-2)(n-1)n(n+1)(n+2)+5n(n-1)(n+1)

   Vì (n-2)(n-1)n(n+1)(n+2) là tích của 5 số nguyên liên tiếp nên chia hết cho 5

        5n(n-1)(n+1) chia hết cho 5

    => n5-n chia hết cho 5              (1)

+) n5-n=n(n4-1)=n(n2-1)(n2+1)=n(n-1)(n+1)(n2+1)

                                                =(n-1)n(n+1)(n2+1)

Vì (n-1)n(n+1) là tích của 3 số nguyên liên tiếp nên chia hết cho 6

=> (n-1)n(n+1)(n2+1) chai hết cho 6

=> n5-n chia hết cho 6                       (2)

  Từ (1) và (2) => n5-n chia hết cho 30

               Vậy n5-n chia hết cho 30   (đpcm)       

25 tháng 9 2019

Hướng dẫn:

+) Với n = 7k  ; k thuộc N

\(n^2+2n+3=\left(7k\right)^2+2.7k+3=7.A+3\)không chia hết cho 7

+) n= 7k +1

\(n^2+2n+3=\left(7k+1\right)^2+2.\left(7k+1\right)+3=7.A+\left(1+2+3\right)=7.B+6\)không chia hết cho 7

+) n = 7k+ 2...

+) n = 7k+3...

+) n= 7k + 4...

+) n= 7k+5...

+) n = 7k + 6 

\(n^2+2n+3=\left(7k+6\right)^2+2.\left(7k+6\right)+3=7.G+\left(6^2+2.6+3\right)=7.G+51\)không chia hết cho 7

Vậy \(n^2+2n+3\)không chia hết cho 7 vs mọi n thuộc N

14 tháng 1 2016

+\(n=5k\)

\(P=4.5k^3+6.5k^2+3.5k-17\) không chia hết cho 5

+\(n=5k+1\)

\(P=4\left(5k+1\right)^3+6\left(5k+1\right)^2+3\left(5k+1\right)-17\)

\(=4\left(125k^3+75k^2+15k+1\right)+6\left(25k^2+10k+1\right)+15k+3-17\)

\(=4.125k^3+18.25k^2+135k-4\)không chia hết cho 5

+ tương tự ...........

Mình mới chỉ có thế thôi , chưa nghĩa ra cách khác ..

 

 

13 tháng 1 2016

bạn phân thành tick rồi chứng minh

1 tháng 12 2017

Nếu n chia hết cho 3 => n^2 chia hết cho 3 => A chia 3 dư 2

Nếu n chia 3 dư 1 => n^2 chia 3 dư 1 => A chia 3 dư 1

Nếu n chia 3 dư 2 => n^2 chia 3 dư 1 => A chia 3 dư 2

=> ĐPCM

k mk nha

25 tháng 11 2017

=>21 chia hết 49 h minh nhé

3 tháng 7 2016

Vì 4 chia 3 dư 1, mũ lên bao nhiêu vẫn chia 3 dư 1

=> 4n với n thuộc N* luôn chia 4 dư 1

Mà 5 chia 3 dư 2

=> 4n + 5 chia hết cho 3

=> đpcm

Bài này lớp 6 bít lm

Ủng hộ mk nha

3 tháng 7 2016

Bạn đã học đồng dư chưa?

Ta có:

\(4\text{≡}1\left(mod3\right)\)

\(\Rightarrow4^n\text{≡}1^n\left(mod3\right)\)

\(\Rightarrow4^n\text{≡}1\left(mod3\right)\)

\(\Rightarrow4^n+5\text{≡}1+5\text{≡}6\text{≡}0\left(mod3\right)\)

Do đó \(4^n+5\) luôn chia hết cho 3 với mọi n thuộc N*.

17 tháng 9 2018

Xet \(n=3k\)

\(\left(3k\right)^2+3k+2\equiv2\left(mod3\right)\)

Xet \(n=3k+1\)

\(\left(3k+1\right)^2+3k+1+2\equiv4\equiv1\left(mod3\right)\)

Xet \(n=3k+2\)

\(\left(3k+2\right)^2+3k+2+2\equiv1+2+2\equiv2\left(mod3\right)\)

\(\Rightarrow n^2+n+2⋮̸3\)

\(\Rightarrow n^2+n+2⋮̸15\)

17 tháng 9 2018

Mod là sao

30 tháng 7 2016

Ta có 5040 = 24. 32.5.7

A= n3(n2- 7)2 – 36n = n.[ n2(n2-7)2 – 36 ] = n. [n.(n2-7 ) -6].[n.(n2-7 ) +6]

 = n.(n3-7n – 6).(n3-7n +6)

Ta lại có n3-7n – 6 = n3 + n2 –n2 –n – 6n -6 = n2.(n+1)- n (n+1) -6(n+1)

=(n+1)(n2-n-6)= (n+1 )(n+2) (n-3)

Tương tự : n3-7n+6 = (n-1) (n-2)(n+3) 

Do đó A= (n-3)(n-2) (n-1) n (n+1) (n+2) (n+3)

Ta thấy : A là tích của 7 số nguyên liên tiếp mà trong 7 số nguyên liên tiếp:

-         Tồn tại một bội số của 5 (nên A chia hết  5 )

-         Tồn tại một bội của 7 (nên A chai hết  7 )

-         Tồn tại hai bội của 3 (nên A chia hết  9 )

-         Tồn tại 3 bội của 2 trong đó có bội của 4 (nên A chia hết 16)

Vậy A chia hết cho 5, 7,9,16 đôi một nguyên tố cùng nhau  A 5.7.9.16= 5040