K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

Đặt A = n^2004+1

Có : A = (n^2012)^2 + 1 > (n^2012)^2

Lại có : A = (n^2012)^2+1 = [ (n^2012)^2 + 2.n^2012 + 1 ] - 2.n^2012 = (n^2012+1)^2 - 2.n^2012 < (n^2012+1)^2

=> (n^2012)^2 < A < (n^2012+1)^2

=> A ko phải là số chính phương

Tk mk nha

22 tháng 8 2023

Gọi 2 số chính phương lẻ là: 2a+1; 2b+1

ĐK: a, b ϵ N

Theo bài ra, ta có 

\(\left(2a+1\right)^2+\left(2b+1^2\right)\)

\(4a^2+4a+1+4b^2+4b+1\)

\(4\left(a^2+a+b^2+b\right)+2\)

Vì \(4\left(a^2+a+b^2+b\right)⋮4\)

    \(2:4\) dư 2

\(4\left(a^2+a+b^2+b\right)+2:4\) dư 2

Mà số chính phương chia 4 dư 0 hoặc 1

\(\left(2a+1\right)^2+\left(2b+1\right)^2\) không phải SCP

Vậy tổng bình phương của 2 số lẻ bất kì ko là số chính phương

22 tháng 1 2015

Bài này hay thật mình thì chỉ nghĩ ra mỗi cách này. Nhưng ko biết vs học phô thông thì tư duy thế nào

 1 số chính phương có tận cùng bằng 0,1,4,5,6,9
N+1 tận cùng =9=> n tận cùng bằng 8 => 2n+1 tận cùng =7 => loại
(2n+1)-(n+1)=n=a^2-b^2=(a-b)(a+b)
2n+1 là số lẻ => a lẻ
N chẵn=> b chẵn
1 số chính phương chia cho 4 dư 0 hoặc 1 => (a+b)(a-b) chia hết cho 8

Còn nó chia hết cho 3 hay không thì phải dùng định lý của fermat đẻ giải 

http://en.wikipedia.org/wiki/Fermat%27s_little_theorem

như vậy chưng minh no chia het cho 8 và 3 là có thể két luạn nó chia hêt cho 24

21 tháng 6 2020

ùi hơi khó thế này thì có làm đc ko

30 tháng 6 2018

Đặt n + 1945 = a2 (1) (a là số tự nhiên) 
Đặt n + 2004 = b2 (2) (b là số tự nhiên) 
Do (n + 2004) > (n + 1945) 
=> b2 > a2 
=> b > a (Do a và b là số tự nhiên) 
Từ (1) và (2) => b2 - a2 = (n + 2004) - (n + 1945) 
<=> (b + a)(b - a) = n + 2004 - n - 1945 
<=> (b + a)(b - a) = 59 
=> (b + a) và (b - a) là ước tự nhiên của 59 
Ta có ước tự nhiên của 59 là các số: 1;59 (59 là số nguyên tố) Kết hợp với (b + a) > (b - a) (do a và b là số tự nhiên) ta có: 
b + a = 59 (3) và b - a = 1 (4) 
cộng vế với vế của (3) và (4) ta được: 
(b + a) + (b - a) = 59 + 1 
<=> b + a + b - a = 60 
<=> 2b = 60 
<=> b = 30 
Thay b = 30 vào (2) ta được 
n + 2004 = 302
<=> n + 2004 = 900 
<=> n = 900 - 2004 
<=> n = -1104 
Vậy với n = -1104 thì n+ 1945 và n + 2004 đều chính phương

30 tháng 6 2018

Đặt n + 1945 = a2 (1) (a là số tự nhiên) 
Đặt n + 2004 = b2 (2) (b là số tự nhiên) 
Do (n + 2004) > (n + 1945) 
=> b2 > a2 
=> b > a (Do a và b là số tự nhiên) 
Từ (1) và (2) => b2 - a2 = (n + 2004) - (n + 1945) 
<=> (b + a)(b - a) = n + 2004 - n - 1945 
<=> (b + a)(b - a) = 59 
=> (b + a) và (b - a) là ước tự nhiên của 59 
Ta có ước tự nhiên của 59 là các số: 1;59 (59 là số nguyên tố) Kết hợp với (b + a) > (b - a) (do a và b là số tự nhiên) ta có: 
b + a = 59 (3) và b - a = 1 (4) 
cộng vế với vế của (3) và (4) ta được: 
(b + a) + (b - a) = 59 + 1 
<=> b + a + b - a = 60 
<=> 2b = 60 
<=> b = 30 
Thay b = 30 vào (2) ta được 
n + 2004 = 302
<=> n + 2004 = 900 
<=> n = 900 - 2004 
<=> n = -1104 
Vậy với n = -1104 thì n+ 1945 và n + 2004 đều chính phương

hc tốt
9 tháng 12 2015

1)Đặt n + 1945 = a² (1) (a là số tự nhiên) 
Đặt n + 2004 = b² (2) (b là số tự nhiên) 
Do (n + 2004) > (n + 1945) 
=> b² > a² 
=> b > a (Do a và b là số tự nhiên) 
Từ (1) và (2) => b² - a² = (n + 2004) - (n + 1945) 
<=> (b + a)(b - a) = n + 2004 - n - 1945 
<=> (b + a)(b - a) = 59 
=> (b + a) và (b - a) là ước tự nhiên của 59 
Ta có ước tự nhiên của 59 là các số: 1;59 (59 là số nguyên tố) Kết hợp với (b + a) > (b - a) (do a và b là số tự nhiên) ta có: 
b + a = 59 (3) và b - a = 1 (4) 
cộng vế với vế của (3) và (4) ta được: 
(b + a) + (b - a) = 59 + 1 
<=> b + a + b - a = 60 
<=> 2b = 60 
<=> b = 30 
Thay b = 30 vào (2) ta được 
n + 2004 = 30² 
<=> n + 2004 = 900 
<=> n = 900 - 2004 
<=> n = -1104 
Vậy với n = -1104 thì n+ 1945 và n + 2004 đều chính phương

9 tháng 12 2015

n =900 -2004 = - nhé