K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2017

a, \(n^2+7n+22=n^2+7n+10+12=n^2+2n+5n+10+12\)

\(=\left(n+2\right)\left(n+5\right)+12\)

Do hiệu của \(n+5\)\(n+2\) là 3 nên \(n+5\) nên chúng cùng chia hết hoặc ko cùng chia hết cho 3

- Nếu n + 5 và n + 2 cùng chia hết cho 3 thì \(\left(n+5\right)\left(n+2\right)⋮9\) nhưng 12 ko chia hết cho 9 \(\Rightarrowđpcm\)

Nếu n + 5 và n + 2 ko cùng chia hết cho 3 \(\Rightarrow\left(n+2\right)\left(n+5\right)\) ko chia hết cho 3 trong khi đó 12 chia hết cho 3 thì \(\left(n+2\right)\left(n+5\right)+12\)ko chia hết cho 3 \(\Rightarrowđpcm\)

b, tương tự nha bn

24 tháng 11 2021

 1 số chia hết cho 3 chưa chắc chia hết cho 9

11 tháng 8 2020

a) Ta có: \(n^2+7n+22=\left(n+2\right)\left(n+5\right)+12\)

*) Nếu \(n+2⋮3\)thì \(\left(n+2\right)+3⋮3\)hay \(n+5⋮3\)

\(\Rightarrow\left(n+2\right)\left(n+5\right)⋮9\)

Mà 12 không chia hết cho 9 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 9

*) Nếu n + 2 không chia hết cho 3 thì n + 5 không chia hết cho 3 suy ra \(\left(n+2\right)\left(n+5\right)\)không chia hết cho 3

Mà 12 chia hết cho 3 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 3 nên không chia hết cho 9

Vậy \(n^2+7n+22\)không chia hết cho 9 (đpcm)

b) \(n^2-5n-49=\left(n+4\right)\left(n-9\right)-13\)

*) Nếu \(n+4⋮13\)thì \(\left(n+4\right)-13⋮13\)hay \(n-9⋮13\)

\(\Rightarrow\left(n+4\right)\left(n-9\right)⋮169\)

Mà 13 không chia hết cho 169 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 169

*) Nếu n + 4 không chia hết cho 13 thì n - 9 không chia hết cho 13 suy ra \(\left(n+4\right)\left(n-9\right)\)không chia hết cho 13

Mà 13 chia hết cho 13 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 13 nên không chia hết cho 169

Vậy \(n^2-5n-49\)không chia hết cho 169 (đpcm)

11 tháng 8 2020

a) G/s phản chứng \(n^2+7n+22⋮9\)

=> \(n^2+4n+4+\left(3n+18\right)⋮9\)

=> \(\left(n+2\right)^2+3\left(n+6\right)⋮9\)

=> \(\left(n+2\right)^2+3\left(n+6\right)⋮3\)

=> \(\left(n+2\right)^2⋮3\)

=> \(\left(n+2\right)^2⋮9\)

Mà: \(\left(n+2\right)^2+\left(3n+18\right)⋮9\) 

=> \(3n⋮9\)

=> \(n⋮3\)

Nhưng khi đó thì: \(n^2+7n⋮3\)nhg 22 ko chia hết cho 3

=> \(n^2+7n+22\)không chia hết cho 3 => Ko thể chia hết cho 9

=> Điều giả sử là sai

=> TA CÓ ĐPCM

31 tháng 8 2016

mình chỉ làm đc ý thứ nhất thui

bạn cần phân tích n^2+7n+22=(n+2)(n+5)+12 
xét hiệu n+5-(n+2)=3chia hết cho 3 
=>n+5và n+2 có cùng số dư khi chia cho 3 
+xét n+5 và n+2 có cùng số dư khác 0: 
=>(n+5)(n+2) không chia hết cho 3 
12 chia hết cho 3=>(n+2)(n+5)+12 không chia hết cho 3 
+xét n+5 và n+2 cùng chia hết cho 3 
=>(n+5)(n+2) chia hết cho 9 
12 không chia hết cho 9=>(n+5)(n+2)+12 không chia hết cho 9 
phần sau làm tương tự tách n^2-5n-49=(n-9)(n+4)-13 

31 tháng 8 2016

Lớp 8 là em xin quỳ

8 tháng 2 2018

Ta co: n^2+7n+22=(n+2)(n+5)+12
xét hiệu n+5-(n+2)=3⋮3
=>n+5và n+2 có cùng số dư khi chia cho 3
+xét n+5 và n+2 có cùng số dư khác 0:
=>(n+5)(n+2) \(⋮̸\) 3
12 chia hết cho 3=>(n+2)(n+5)+12 \(⋮̸\) 3
+xét n+5 và n+2 cùng chia hết cho 3
=>(n+5)(n+2) chia hết cho 9
12 \(⋮̸\) 9=>(n+5)(n+2)+12 \(⋮̸\) 9

=>DPCM

19 tháng 11 2018

a) Đề sai, phải là 384 mới đúng

Đặt \(A=n^4-10n^2+9\)

\(A=\left(n^4-n^2\right)-\left(9n^2-9\right)\)

\(A=n^2\left(n^2-1\right)-9\left(n^2-1\right)\)

\(A=\left(n^2-1\right)\left(n^2-9\right)\)

\(A=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Vì n lẻ nên n = 2k + 1 ( k thuộc Z )

Khi đó A = 2k( 2k + 2)(2k - 2)( 2k + 4)

A = 16k( k + 1)( k - 1)( k + 2)

Ta thấy k - 1; k; k + 1; k + 2 là những số nguyên liên tiếp nên có hai số chẵn liên tiếp và một số chia hết cho 3

=> k( k + 1)( k - 1)( k + 2) chia hết cho 3 và 8

=> k( k + 1)( k - 1)( k + 2) chia hết cho 24 ( vì ƯCLN(3;8)=1)

=> A chia hết cho 16.24 = 384 ( Đpcm )

19 tháng 11 2018

Đăng từng câu thôi, không giới hạn số lượng câu hỏi mà :)

b) Ta có: 18n + 9 ⋮ 9; 10n không chia hết cho 9

=> 10n + 18n + 9 không chia hết cho 27

21 tháng 3 2016

Đơn giản k cho mình rồi giải cho

13 tháng 1 2019

n thuộc N

a) TH1: n chia hết cho 3 => n.(n2+1).(n2+2) chia chết cho 3

TH2: n chia 3 dư 1 => n=3k+1=> n2+2 =(3k+1)2+2=9k2+6k+3 chia hết cho 3

TH3: n chia 3 dư 2 => n=3k+2 => n2+2=(3k+2)2+2=9k2+12k+6 chia hết cho 3

=> đpcm