Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\Leftrightarrow n^3-8+6⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
c: \(\Leftrightarrow n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
\(\Leftrightarrow n^2+n+1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow n^2+n+1\in\left\{1;3\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
Lời giải:
Ta có:
\(x^{8n}+x^{4n}+1=(x^{4n})^2+2.x^{4n}+1-x^{4n}\)
\(=(x^{4n}+1)^2-x^{4n}=(x^{4n}+1+x^{2n})(x^{4n}+1-x^{2n})\)
Xét \(x^{4n}+1+x^{2n}=(x^{2n})^2+2.x^{2n}+1-x^{2n}=(x^{2n}+1)^2-x^{2n}\)
\(=(x^{2n}+1+x^n)(x^{2n}+1-x^n)\)
Do đó:
\(x^{8n}+x^{4n}+1=(x^{4n}+1-x^{2n})(x^{2n}+1+x^n)(x^{2n}+1-x^n)\)
\(\Rightarrow x^{8n}+x^{4n}+1\vdots x^{2n}+x^n+1\) (đpcm)
b)
Sửa đề: \(x^{3m+1}+x^{3n+2}+1\vdots x^2+x+1\)
Đặt \(A=x^{3m+1}+x^{3n+2}+1\)
\(\Leftrightarrow A=x(x^{3m}-1)+x+x^2(x^{3n}-1)+x^2+1\)
\(\Leftrightarrow A=x[ (x^3)^m-1]+x^2[(x^3)^n-1]+(x^2+x+1)\)
Khai triển:
\((x^3)^m-1=(x^3)^m-1^m=(x^3-1).T=(x-1)(x^2+x+1)T\)
(đặt là T vì phần biểu thức đó không quan trọng)
\(\Rightarrow (x^3)^m-1\vdots x^2+x+1\)
Tương tự, \((x^3)^n-1\vdots x^2+x+1\)
Do đó, \(A=x(x^{3m}-1)+x^2(x^{3n}-1)+x^2+x+1\vdots x^2+x+1\)
Ta có đpcm.
a: \(=3n^4-3n^3-11n^3+11n^2+10n^2-10n\)
\(=\left(n-1\right)\left(3n^3-11n^2+10n\right)\)
\(=n\left(n-1\right)\left(n-2\right)\left(3n-5\right)\)
\(=n\left(n-1\right)\left(n-2\right)\left(3n+3-8\right)\)
\(=3n\left(n-1\right)\left(n+1\right)\left(n-2\right)-8n\left(n-2\right)\left(n-1\right)\)
Vì n;n-1;n+1;n-2 là 4 số liên tiếp
nên n(n-1)(n+1)(n+2) chia hết cho 4!=24
mà -8n(n-2)(n-1) chia hết cho 24
nên A chia hết cho 24
b: \(=n\left(n^4-5n^2+4\right)\)
\(=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)
Vì đây là 5 số liên tiếp
nên \(n\left(n-1\right)\cdot\left(n-2\right)\left(n+1\right)\left(n+2\right)⋮5!=120\)
\(3n^2-4n-2⋮n+1\)
\(\Leftrightarrow3n^2+3n-7n-7+5⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)