Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 4 số tự nhiên liên tiếp đó là: x-1;x;x+1;x+2
=>(x-1).x.(x+1)(x+2)+1=(x-1)(x+2).x(x+1)=(x2+x-2).(x2+x)+1
=(x2+x)2-2(x2+x)+1=(x2+x-1)2 (dpcm)
Vậy tích 4 số tự nhiên liên tiếp +1 luôn viết được dưới dạng a^2
Goị 4 số tự nhiên đó là n,n+1,n+2,n+3
Theo đề bài ta có:
n.(n+1).(n+2).(n+3)+1=n.(n+3).(n+1).(n+2)+1
=(n^2+3n).(n^2+3n+2+1(*)
ĐẶt n^2 +3n=t thì (*)=t(t+2)+1=t^2+2t+1(t+1)^2(n^2+3n+1)^2
Vì n thuộc N NÊN suy ra:n^2+3n+1 thuộc N
Vậy n.(n+1).(n+2).(n+3) là số chính phương
k mk nha ,chúc bạn học tốt
Bài 2 :
a+b=5 <=> ( a+b)2=52
<=> a2+ab+b2=25
Hay : a2+1+b2=25
<=> a2+b2=24
Bài 4 : Gọi 2 số tự nhiên lẻ liên tiếp lần lượt là : a, a+2 ( a lẻ , a thuộc N 0
Theo bài ra , ta có : ( a+2)2-a2= 56
<=> a2+4a+4-a2=56
<=> 4a=56-4
<=> 4a=52
<=> a=13
Vậy 2 số tự nhiên lẻ liên tiếp là : 13; 15
Ta đặt số cần tìm là 2p + 1 = k³ ( k ∈ N )
<=> 2p = k³ - 1
<=> 2p = ( k - 1 )( k² + k + 1 )
Thấy rằng vế trái có p là số nguyên tố, nghĩa là vế phải có một biểu thức bằng 2, biểu thức kia bằng p. Mà k² + k + 1 = k( k + 1 ) + 1, k( k + 1 ) chia hết cho 2 => k( k + 1 ) + 1 không chia hết cho 2.
=>{k-1=2
{k²+k+1=p
Giải hệ phương trình ta được k=3, p=13 (thỏa mãn)
Vậy chỉ có số duy nhất cần tìm là 27.
Ta đặt số cần tìm là 2p + 1 = k³ ( k ∈ N )
<=> 2p = k³ - 1
<=> 2p = ( k - 1 )( k² + k + 1 )
Thấy rằng vế trái có p là số nguyên tố, nghĩa là vế phải có một biểu thức bằng 2, biểu thức kia bằng p. Mà k² + k + 1 = k( k + 1 ) + 1, k( k + 1 ) chia hết cho 2 => k( k + 1 ) + 1 không chia hết cho 2.
=>{k-1=2
{k²+k+1=p
Giải hệ phương trình ta được k=3, p=13 (thỏa mãn)
Vậy chỉ có số duy nhất cần tìm là 27.
Gọi hai số chính phương chẵn/lẻ liên tiếp là (2k)2 và (2k + 2)2/(2h + 1)2 và (2h + 3)2. Ta có:
\(\left\{{}\begin{matrix}\left(2k+2\right)^2-\left(2k\right)^2=\left(2k+2-2k\right)\left(2k+2+2k\right)=2\left(4k+2\right)=8k+4⋮4\\\left(2h+3\right)^2-\left(2h+1\right)^2=\left(2h+3-2h-1\right)\left(2h+3+2h+1\right)=2\left(4k+4\right)=8k+8⋮4\end{matrix}\right.\)
Vậy...
P/s: Bài làm có thể sai sót, mong mn thông cảm