K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

mk ko hiểu đề

5 tháng 10 2021

Câu b bạn ạ.

16 tháng 1 2020

Giả sử tồn tại các số nguyên x,y thảo mãn \(x^4+y^3+4=0\) \(\left(1\right)\)

Ta có: \(\left(1\right)\) \(\Leftrightarrow\left(x^2-2x+2\right)\left(x^2+2x+2\right)=-y^3\)

Trước tiên ta nhận xét rằng x phải là một số lẻ, bởi ngược lại nếu x là một số chẵn thì \(x^4+4=-y^3\) là lập phương của một số chẵn, nhưng \(x^4+4\) không chia hết cho 8 với mọi số nguyên x ( vô lí ).

Vậy x là một số lẻ, suy ra y cũng là một số lẻ.

Đặt \(d=\left(x^2-2x+2,x^2+2x+2\right)\)

Ta có: \(4x=\left[\left(x^2+2x+2\right)-\left(x^2-2x+2\right)\right]⋮d\)

Mặt khác d là số lẻ ( vì \(-y^3⋮d\)  và y là số lẻ ), dẫn đến \(\left(4,d\right)=1\) và do đó \(x⋮d\)

Suy ra \(2⋮d\) nên \(d=1\) ( vì d lẻ )

Tóm lại, hai số nguyên \(x^2-2x+2\) và \(x^2+2x+2\) là hai số nguyên tố cùng nhau, có tích là lập phương của một số nguyên nên mỗi số là lập phương của một số nguyên.

Đặt:

\(x^2-2x+2=a^3,x^2+2x+2=b^3\) với \(a,b\inℤ\)

Suy ra \(\left(x-1\right)^2=\left(a-1\right)\left(a^2+a+1\right)\)

\(\left(x+1\right)^2=b^3-1=\left(b-1\right)\left(b^2+b+1\right)\)

Do đó: \(a-1\ge0,b-1\ge0\)

Gọi \(d_1\) là ước chung lớn nhất của \(a-1\) và \(a^2+a=1\) thì \(3a=\left[\left(a^2+a+1\right)-\left(a-1\right)^2\right]⋮d_1\)

Mà \(\left(a,d_1\right)=1\) ( vì \(d_1\) là ước của \(a-1\) ) nên \(3⋮d_1\) )

Do đó: \(d_1\in\left\{1;3\right\}\)

Tương tự gọi \(d_2\) là ước chung lớn nhất của \(b-1\) và \(b^2+b+1\) thì \(d_2\in\left\{1;3\right\}\)

Chú ý rằng nếu \(d_1=d_2=3\) thì \(\left(x-1\right)^2\) và \(\left(x+1\right)^2\) đều chia hết cho 3

Suy ra \(2=\left(x+1\right)-\left(x-1\right)\) chia hết cho 3 ( vô lí )

Vì vậy trong hai số \(d_1,d_2\) phải có một số bằng 1

+ Nếu \(d_1=1\) thì khi đó \(a-1\) và \(a^2+a+1\) là hai số nguyên tố cùng nhau có tích là một số chính phương nên cả 2 số đó đồng thời là số chính phương.

Đặt \(a^2+a+1=m^2\) thì

\(4m^2=4\left(a^2+a=1\right)=\left(2a+1\right)^2+3\)

Do đó \(\left(2m-2a-1\right)\left(2m+2a+1\right)=3\)

TH1: \(2m-2a-1=1,2m+2a+1=3\) thì \(a=0\) ( vô lí vì phương trình \(x^2-2x+2\) không cs nghiệm nguyên )

TH2: \(2m-2a-1=3,2m+2a+1=1\) thì \(a=-1\) ( vô lí vì phương trình \(x^2-2x+2=-1\)  không cs nghiệm nguyên )

+ Nếu \(d_2=1\) làm tương tự ta không tìm đc x,y thỏa mãn.

Vậy không tồn tại các số nguyên x,y thỏa mãn đề bài.

Đây là một bài toán tổ hợp, yêu cầu xây dựng một mô hình thỏa mãn các tính chất đã cho. Bài toán bắt đầu từ hai định nghĩa sau: Một tập hợp S hữu hạn các điểm trên mặt phẳng được gọi là một tập cân bằng nếu với hai điểm A, B thuộc S thì tồn tại điểm C thuộc S sao cho CA = CB (tức là C nằm trên trung trực AB).Ví dụ 3 đỉnh của một tam giác đều là một tập cân bằng, còn 4...
Đọc tiếp

Đây là một bài toán tổ hợp, yêu cầu xây dựng một mô hình thỏa mãn các tính chất đã cho. Bài toán bắt đầu từ hai định nghĩa sau: Một tập hợp S hữu hạn các điểm trên mặt phẳng được gọi là một tập cân bằng nếu với hai điểm A, B thuộc S thì tồn tại điểm C thuộc S sao cho CA = CB (tức là C nằm trên trung trực AB).

Ví dụ 3 đỉnh của một tam giác đều là một tập cân bằng, còn 4 đỉnh của một hình vuông thì không cân bằng. Một tập hợp S hữu hạn các điểm trên mặt phẳng được gọi là một tập không tâm nếu không tồn tại 4 điểm A, B, C, D thuộc S sao cho DA = DB = DC. Nói cách khác, nếu 3 điểm A, B, C thuộc S thì tâm đường tròn ngoại tiếp của tam giác ABC không thuộc S. 

Đề toán yêu cầu:

a) Chứng minh rằng với mọi n ≥ 3, tồn tại một tập cân bằng gồm n điểm trên mặt phẳng.

b) Tìm tất cả các giá trị n ≥ 3 sao cho tồn tại tập hợp gồm n điểm trên mặt phẳng, cân bằng và không tâm.

0