Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử đường thẳng (k + 1)x – 2y = 1 đi qua điểm cố định M(x0; y0)
Vậy điểm cố định mà đường thẳng (k + 1)x – 2y = 1 đi qua là
Giả sử đường thẳng (k + 1)x – 2y = 1 đi qua điểm cố định M ( x 0 ; y 0 )
Vậy điểm cố định mà đường thẳng (k + 1)x – 2y = 1 đi qua là
chứng minh rằng khi k thay đổi các đường thẳng (k+1)x-2y=1 luôn đi qua một điểm cố định. tìm điển đó
Giải:
Trong phương trình biểu diễn các đường thẳng \(\left(k+1\right)x-2y=1\) ta nhận thấy:
Khi \(x=0\) thì:
Điều này chứng tỏ rằng các đường thẳng có phương trình:
\(\left(k+1\right)x-2y=1\) luôn luôn đi qua điểm cố định I có tọa độ \(\left(0;\frac{1}{2}\right)\forall k\in R\)
Hướng dẫn trả lời:
Trong phương trình biểu diễn các đường thẳng (k + 1)x – 2y = 1, ta nhận thấy: Khi x = 0 thì
Điều này chứng tỏ rằng các đường thẳng có phương trình:
(k + 1)x – 2y = 1 luôn luôn đi qua điểm cố định I có tọa độ (0;−12)∀k∈R
Giả sử đường thẳng ( m + 1 ) x - 2y = 1 đi qua điểm cố định M ( x0 ; y0 )
\(\Leftrightarrow\left(m+1\right).x_0-2y_0=1\forall m\)
\(\Leftrightarrow m.x_0+x_0-2y_0-1=0\forall m\)
\(\Leftrightarrow\hept{\begin{cases}x_0=0\\x_0-2y_0-1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_0=0\\y_0=\frac{-1}{2}\end{cases}}\)
Vậy điểm cố định mà đường thẳng ( m + 1 ) x - 2y = 1 đi qua là \(M\left(0;\frac{-1}{2}\right)\)