Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(k=\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)
\(\Rightarrow\frac{a+c}{b+d}=k\)
mà \(k=\frac{a}{b}\)
\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\)(đpcm)
b) đặt \(k=\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\frac{a-c}{b-d}=\frac{bk-dk}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)
\(\Rightarrow\frac{a-c}{b-d}=k\)
mà \(k=\frac{a}{b}\)
\(\Rightarrow\frac{a-c}{b-d}=\frac{c}{d}\)(đpcm)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{a+b+c+d}=1\\ \Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Rightarrow a=b=c=d\\ \Rightarrow VT=\left(\dfrac{2019a+2020a-2021a}{2019a+2020a-2021a}\right)^3=1^3=1=\dfrac{a^2}{a\cdot a}=VP\)
em gửi bài qua fb của thầy nhé thầy HD giải cho, tìm fb của thầy qua sđt: 0975705122
Ta có :
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\)( 1 )
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)
TH1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{c}\)( 3 )
TH2 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\)( 4 )
Từ ( 3 ) và ( 4 ) suy ra : \(\frac{a}{c}=\frac{b}{d}\)hay \(\frac{a}{b}=\frac{c}{d}\)
TH2 : \(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{2b}{2c}=\frac{b}{c}\)( 5 )
\(\frac{a+b}{c+d}=\frac{b-a}{d-c}=\frac{2a}{2d}=\frac{a}{d}\)( 6 )
Từ ( 5 ) và ( 6 ) suy ra : \(\frac{b}{c}=\frac{a}{d}\)hay \(\frac{a}{b}=\frac{d}{c}\)
Vậy nếu \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)thì \(\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)
Đặt: \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=b.k\) ; \(c=d.k\)
Ta có:
\(\frac{a-b}{a+b}=\frac{b.k-b}{b.k+b}=\frac{b.\left(k-1\right)}{b.\left(k+1\right)}=\frac{k-1}{k+1}\left(1\right)\)
\(\frac{c-d}{c+d}=\frac{d.k-d}{d.k+d}=\frac{d.\left(k+1\right)}{d.\left(k-1\right)}=\frac{k-1}{k+1}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
a/b<c/d=>ad<bc
=>ad+ab<bc+ab
=>a(b+d)<b(a+c)
=>a/b<a+c/b+d (1)
ad<bc
=>ad+cd<bc+cd
=>d(a+c)<c(b+d)
=>a+c/b+d<c/d (2)
từ (1);(2) =>đpcm
Ta có: \(\sqrt{\frac{a}{b+c+d}}=\sqrt{\frac{a^2}{a\left(b+c+d\right)}}=\frac{a}{\sqrt{a\left(b+c+d\right)}}\)
Xét \(\sqrt{a\left(b+c+d\right)}\le\frac{a+b+c+d}{2}\)
\(\Rightarrow\frac{a}{\sqrt{a\left(b+c+d\right)}}\ge\frac{2a}{a+b+c+d}\)
\(\Rightarrow\sqrt{\frac{a}{b+c+d}}\ge\frac{2a}{a+b+c+d}\)
(a,b,c,d>0)
Cmtt: \(\hept{\begin{cases}\sqrt{\frac{b}{a+c+d}}\ge\frac{2b}{a+b+c+d}\\\sqrt{\frac{c}{b+a+d}}\ge\frac{2c}{a+b+c+d}\\\sqrt{\frac{d}{a+b+c}}\ge\frac{2d}{a+b+c+d}\end{cases}}\)
\(\Rightarrow\sqrt{\frac{b}{a+c+d}}+\sqrt{\frac{c}{a+b+d}}+\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{d}{a+b+c}}\)\(\ge\frac{2a+2b+2c+2d}{a+b+c+d}=2\)
Đến đây tự xử lí phần dấu "="
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng TC DTSBN ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\) ( đpcm )
ko thể CM
\(\frac{a}{c}< \frac{b}{d}\)
khi chưa có giả thuyết gì nha
Mình quên
\(\frac{a}{c}< \frac{b}{d}\) có sẵn rồi nha