Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(a^2+b^2+c^2\ge ab+bc+ca\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
(luôn đúng)
b. Áp dụng BĐT \(x^2+y^2\ge2xy\)
\(a^2+b^2\ge2ab,a^2+1\ge2a,b^2+1\ge2b\)\(\Rightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\Leftrightarrow a^2+b^2+1\ge ab+a+b\)
c. Tương tự câu b
Áp dụng BĐT Cô si ta có
i. \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}},\frac{1}{b}+\frac{1}{c}\ge\frac{2}{\sqrt{bc}},\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ca}}\)
\(\Rightarrow2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)
k. Tương tự câu i
c) theo bđt cauchy ta có
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+1\ge2b\\a^2+1\ge2a\end{matrix}\right.\)
cộng hết lại rút 2 đi \(\Rightarrowđpcm\)
a/
\(a.1.\sqrt{b-1}+b.1.\sqrt{a-1}\le a\left(\frac{1+b-1}{2}\right)+b\left(\frac{1+a-1}{2}\right)=ab\)
Dấu "=" xảy ra khi \(a=b=2\)
b/ \(P=a+\frac{1}{\left(a+1\right)^2}=\frac{\left(a+1\right)}{8}+\frac{a+1}{8}+\frac{1}{\left(a+1\right)^2}+\frac{3a}{4}-\frac{1}{4}\)
\(P\ge3\sqrt[3]{\frac{\left(a+1\right)^2}{8^2.\left(a+1\right)^2}}+\frac{3.1}{4}-\frac{1}{4}=\frac{5}{4}\)
Câu b đề bài ko đúng (nếu như điều kiện thực sự là \(a\ge1\))
a) \(\dfrac{a^2+2}{\sqrt{a^2+1}}=\dfrac{a^2+1+1}{\sqrt{a^2+1}}=\sqrt{a^2+1}+\dfrac{1}{\sqrt{a^2+1}}\ge2\)
b) Tương tự
ta có
\(\frac{a^2+2}{\sqrt{a^2+1}}=\frac{a^2+1+1}{\sqrt{a^2+1}}=\sqrt{a^2+1}+\frac{1}{\sqrt{a^2+1}}\ge2\)
( theo bất đẳng thức cauchy)
dấu bằng xảy ra khi \(\sqrt{a^2+1}=1\Leftrightarrow a=0\)