K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2019

1) Tính C

\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)

\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)

\(=1-\frac{1}{n!}\)

9 tháng 11 2019

3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)

\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)

29 tháng 11 2018

Tuowgn đương chứng minh: A= \(\left(n-1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\) không là số tự nhiên.

\(0< \frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(n-1\right).n}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\) => n-2 <A<n+1 =<A không phải là 1 số tự nhiên

19 tháng 1 2019

sai đề bài

25 tháng 7 2019

Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo nhé!

9 tháng 1 2018

Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

...........

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}=\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\) (1)

Mà \(A>0\) (2)

Từ (1) và (2) => 0 < A < 1 => đpcm

13 tháng 8 2016

Ta có :

\(A=\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+...+\frac{\left(n-1\right)n-1}{n!}\)

\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{\left(n-1\right)n}{n!}-\frac{1}{n!}\)

\(=1-\frac{1}{2!}+1-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4}!+\frac{1}{3!}-\frac{1}{5!}+\frac{1}{4!}-...+\frac{1}{\left(n-2\right)!}-\frac{1}{n!}\)

\(=2-\frac{1}{n!}< 2\)

Vậy ...

10 tháng 12 2017

1,

Ta có; \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)

\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)

........

\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)

Cộng các vế ta được:

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=10\) (đpcm)

2,Câu hỏi của Nguyễn Như Quỳnh - Toán lớp 7 | Học trực tuyến

3, 

3n+2-2n+2+3n-2n

= 3n.32-2n.22+3n-2n

= 3n(9 + 1) - 2n(4 + 1)

= 3n.10 - 2n.5

= 3n.10 - 2n-1.10

= 10(3n - 2n-1) chia hết cho 10

12 tháng 7 2018

Ta thấy: 1+ 2/ n^2+3n = n^2+3n+2 / n(n+3) =(n+1)(n+2) /n(n+3)

Áp dụng công thức trên,ta có:

A= (1+2/4 )(1+ 2/10)(1+2/18).....(1+2/ n^2+3n)

=(1+2 /1x4)( 1+2 /2x5)(1+2 /3x6).....[ (n+1)(n+2)/ n(n+3)]

=(2x3 /1x4)(3x4 /2x5)(4x5 /3x6).....[ (n+1)(n+2) /n(n+3)]

= 3x(n+1 /n+3)

Vì n+1 /n+3 <1 với mọi n thuộc N nên 3x(n+1 /n+3) <3

Vậy A<3