K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

Ta có: \(\left(\left|x\right|-\left|y\right|\right)^2\ge0\)

\(\Rightarrow x^2+y^2\ge2\left|xy\right|\)

\(\Rightarrow\left|\frac{2xy}{x^2+y^2}\right|\le1\)(*)

Lại có: \(\left(a+b\right)^2+\left(1-ab\right)^2=\left(a^2+1\right)\left(b^2+1\right)\)

Nên: \(\left|\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\right|=\left|\frac{\left(a+b\right)\left(1-ab\right)}{\left(a+b\right)^2+\left(1-ab\right)^2}\right|\)

Áp dụng (*), ta có: \(\left|\frac{\left(a+b\right)\left(1-ab\right)}{\left(a+b\right)^2+\left(1-ab\right)^2}\right|\le\frac{1}{2}\)

\(\Rightarrow\left|\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\right|\le\frac{1}{2}\)

\(\Rightarrow\frac{-1}{2}\le\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\le\frac{1}{2}\)  \(\left(đpcm\right)\)

27 tháng 3 2017

Ta chứng minh

\(\frac{-1}{2}\le\frac{\left(a+b\right)\left(1-ab\right)}{\left(a^2+1\right)\left(b^2+1\right)}\)

\(\Leftrightarrow2\left(a+b\right)\left(1-ab\right)+\left(a^2+1\right)\left(b^2+1\right)\ge0\)

\(\Leftrightarrow\left(ab-a-b-1\right)^2\ge0\)(đúng)

Tương tự cho trường hợp còn lại ta có ĐPCM

27 tháng 3 2017

Bạn trã lời cho mình được không

10 tháng 12 2017

Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)

\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)

\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)

                  \(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)

\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)

3 tháng 1 2020

Cảm thấy đề có gì đó sai sai ở cả tử và mẫu, bạn check lại thử.

30 tháng 7 2020

1. Áp dụng BĐT Cauchy dạng Engle, ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

30 tháng 7 2020

\(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\frac{1}{3}\left(a+b\right)\left(a^2+b^2+1-ab\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\left(a^2+b^2+1\right)\left(\frac{a+b}{3}-1\right)-ab\left(\frac{a+b}{3}-1\right)\le0\)

\(\Leftrightarrow\left(a^2+b^2+1-ab\right)\left(\frac{a+b}{3}-1\right)\le0\)

Vì a, b dương \(\Rightarrow a^2+b^2+1-ab>0\Rightarrow\left(\frac{a+b}{3}-1\right)\le0\Leftrightarrow a+b\le3\)

\(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}=a+\frac{8}{a}+b+\frac{2}{b}=2a+2b+\frac{8}{a}+\frac{2}{b}-\left(a+b\right)\ge8+4-3=9\)

Áp dụng BĐT Cauchy cho a ; b dương

Dấu "=" xảy ra \(\Leftrightarrow a=2;b=1\)

26 tháng 3 2016

Đặt  \(A=\frac{c\left(ab+1\right)^2}{b^2\left(bc+1\right)}+\frac{a\left(bc+1\right)^2}{c^2\left(ca+1\right)}+\frac{b\left(ca+1\right)^2}{a^2\left(ab+1\right)}\)  và   \(x=ab+1;\)  \(y=bc+1;\)  \(z=ca+1\)   \(\left(\text{*}\right)\)

Khi đó, với các giá trị tương ứng trên thì biểu thức  \(A\)  trở thành:   \(A=\frac{cx^2}{b^2y}+\frac{ay^2}{c^2z}+\frac{bz^2}{a^2x}\)

Áp dụng bất đẳng thức Cauchy cho bộ ba phân số không âm của biểu thức trên (do  \(a,b,c>0\)), ta có:

 \(A=\frac{cx^2}{b^2y}+\frac{ay^2}{c^2z}+\frac{bz^2}{a^2x}\ge3\sqrt[3]{\frac{cx^2}{b^2y}.\frac{ay^2}{c^2z}.\frac{bz^2}{a^2z}}=3\sqrt[3]{\frac{xyz}{abc}}\)  \(\left(\text{**}\right)\)

Mặt khác, do  \(ab+1\ge2\sqrt{ab}\)  (bất đẳng thức  AM-GM cho hai số \(a,b\) luôn dương)

              nên   \(x\ge2\sqrt{ab}\)  \(\left(1\right)\) (theo cách đặt ở  \(\left(\text{*}\right)\))

Hoàn toàn tương tự với vòng hoán vị   \(a\)  \(\rightarrow\)  \(b\)  \(\rightarrow\)  \(c\) và với chú ý cách đặt ở \(\left(\text{*}\right)\), ta cũng có:

\(y\ge2\sqrt{bc}\)  \(\left(2\right)\)  và  \(z\ge2\sqrt{ca}\)  \(\left(3\right)\)

Nhân từng vế  \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\), ta được  \(xyz\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8abc\)

Do đó,  \(3\sqrt[3]{\frac{xyz}{abc}}\ge3\sqrt[3]{\frac{8abc}{abc}}=3\sqrt[3]{8}=6\)  \(\left(\text{***}\right)\)  

Từ  \(\left(\text{**}\right)\)  và  \(\left(\text{***}\right)\)  suy ra được   \(A\ge6\), tức  \(\frac{c\left(ab+1\right)^2}{b^2\left(bc+1\right)}+\frac{a\left(bc+1\right)^2}{c^2\left(ca+1\right)}+\frac{b\left(ca+1\right)^2}{a^2\left(ab+1\right)}\ge6\)  (điều phải chứng minh)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b=c=1\)

26 tháng 3 2016

mới học lớp 5  thôi