\(3x^2+y^2+4xy+4x-2y+5=0\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2020

Bài 1 :

a) \(x^3-x^2-x-2=0\)

\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)

\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)

\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)

Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)

Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)

Vậy \(x=2\)

1 tháng 11 2020

Bài 2: 

\(2x^2+y^2-2xy+2y-6x+5=0\)

\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)

Vì \(\left(x-y-1\right)^2\ge0\forall x,y\)\(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)

Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)

Vậy \(x=2\)và \(y=1\)

20 tháng 1 2019

\(x^2+y^2=2x^2y^2\)

\(\Rightarrow\frac{x^2+y^2}{x^2y^2}=2\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}=2\left(1\right)\)

Do x,y bình đẳng như nhau,giả sử \(x\ge y\)

\(\Rightarrow x^2\ge y^2\)

Với x<1 thì VT của (1) âm mà vế phải dương.(Loại)

Với x=1 thì thỏa mãn

Với x>1 thì dễ thấy KTM

Vậy....

NV
2 tháng 4 2019

Cách làm đều giống nhau, mình làm câu a, các câu còn lại bạn tự giải tương tự:

\(x^2+\left(3y-1\right)x+2y^2-y+3=0\) (1)

Coi đây là pt bậc 2 theo ẩn x với y là tham số

\(\Delta=\left(3y-1\right)^2-4\left(2y^2-y+3\right)=\left(y-1\right)^2-12\)

Để pt có nghiệm nguyên \(\Rightarrow\Delta=k^2\Rightarrow\left(y-1\right)^2-12=k^2\)

\(\Leftrightarrow\left(y-1\right)^2-k^2=12\Leftrightarrow\left(y-1-k\right)\left(y-1+k\right)=12\)

Đến đây giải pt nguyên như bình thường, nhưng 12 có rất nhiều ước nguyên (có 2.(2+1)(1+1)=12 ước nguyên) nên ta thêm bước nhận xét do \(\left(y-1-k\right)+\left(y-1-k\right)=2\left(y-1\right)\) chẵn nên luôn cùng tính chẵn lẻ, vậy ta chỉ cần xét các trường hợp \(\left(2;6\right);\left(-2;-6\right);\left(6;2\right);\left(-6;-2\right)\)

Ví dụ 1 trường hợp, bạn tự làm 3 trường hợp còn lại:

\(\left\{{}\begin{matrix}y-1-k=2\\y-1+k=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=5\\k=2\end{matrix}\right.\)

Thế \(y=5\) vào (1): \(x^2+14x+48=0\Rightarrow\left[{}\begin{matrix}x=-6\\x=-8\end{matrix}\right.\)

20 tháng 3 2017

bạn hỏi Gemini đi anh ý biết đấy

20 tháng 3 2017

k minh di mink giai cho de lam