\(\Delta\)là số chí...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 4 2019

Cách làm đều giống nhau, mình làm câu a, các câu còn lại bạn tự giải tương tự:

\(x^2+\left(3y-1\right)x+2y^2-y+3=0\) (1)

Coi đây là pt bậc 2 theo ẩn x với y là tham số

\(\Delta=\left(3y-1\right)^2-4\left(2y^2-y+3\right)=\left(y-1\right)^2-12\)

Để pt có nghiệm nguyên \(\Rightarrow\Delta=k^2\Rightarrow\left(y-1\right)^2-12=k^2\)

\(\Leftrightarrow\left(y-1\right)^2-k^2=12\Leftrightarrow\left(y-1-k\right)\left(y-1+k\right)=12\)

Đến đây giải pt nguyên như bình thường, nhưng 12 có rất nhiều ước nguyên (có 2.(2+1)(1+1)=12 ước nguyên) nên ta thêm bước nhận xét do \(\left(y-1-k\right)+\left(y-1-k\right)=2\left(y-1\right)\) chẵn nên luôn cùng tính chẵn lẻ, vậy ta chỉ cần xét các trường hợp \(\left(2;6\right);\left(-2;-6\right);\left(6;2\right);\left(-6;-2\right)\)

Ví dụ 1 trường hợp, bạn tự làm 3 trường hợp còn lại:

\(\left\{{}\begin{matrix}y-1-k=2\\y-1+k=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=5\\k=2\end{matrix}\right.\)

Thế \(y=5\) vào (1): \(x^2+14x+48=0\Rightarrow\left[{}\begin{matrix}x=-6\\x=-8\end{matrix}\right.\)

Dùng cái đầu đi ạ

12 tháng 9 2018

mấy bài dạng như này mk sẽ hướng dẩn nha .

a) ta có : \(\left\{{}\begin{matrix}\left(x+y-2\right)\left(2x-y\right)=0\\x^2+y^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+y-2=0\\2x-y=0\end{matrix}\right.\\x^2+y^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y-2=0\\x^2+y^2=2\end{matrix}\right.\\\left\{{}\begin{matrix}2x-y=0\\x^2+y^2=0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) giải bằng cách thế bình thường nha

b) ta có : \(\left\{{}\begin{matrix}x^2+y^2+2x+2y=6\\x+y-3xy+1=0\end{matrix}\right.\) \(\Leftrightarrow2x^2+2y^2+6xy-5=0\)

\(\Leftrightarrow2\left(x+y\right)^2+2xy-5=0\) sài vi ét --> .......................

c) đây là phương trình đối xứng loại 1 , có trên mang nha .

câu d và e là phương trình đối xứng loại 2 , cũng có trên mạng nha .

Giải hệ phương trình: 1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\) 2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\) 3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\) 4....
Đọc tiếp

Giải hệ phương trình:

1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)

2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)

3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)

4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)

5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)

6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)

7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)

0