K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

dễ như ăn cháo

21 tháng 8 2016

gọi d thuộc ưc nguyên tố của ( 2n+!; 2n^2 -1); ta có

a; \(\frac{2n+1}{2n^2-1}=\frac{2\left(n^2+1\right)}{2n-1}=\frac{2n^2+2}{2n-1}\)cchia hết cho d

=> 2n^2+2-2n^2-chia hết choi d

=> 1 chia hết cho d=> d=1

vậy 2n+1/2n^2-1 nguyên tố cùng nhau

17 tháng 4 2017

\(A=\frac{n\left(n+1\right)}{2};B=2n+1\\ \)

gọi d là ước lớn nhất của A và B

ta có

\(8A-B^2=4n^2+4n-\left(4n^2+4n+1\right)=1\)

Vậy \(d=+-1\) => A,B có ước lớn nhất là 1 =>dpcm 

5 tháng 5 2017

mình k hiểu cho lắm dong thứ 2

28 tháng 5 2016

a, 59x + 46y = 2004

Vì 2004 là số chẵn, 46y là số chẵn => 59x là số chẵn

=> x là số chẵn, mà x là số nguyên tố

=> x = 2

=> 2.59 + 46y = 2004

=> 46y = 2004 ‐ 118

=> 46y = 1886

=> y = 1886:46 => y = 41

Vậy x = 2; y = 41

29 tháng 5 2016

đã làm đề 23 rùi hả!!!!!

Ai kết bạn vs mình ko mình hết lượt rồi

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

1 tháng 4 2018

  Đặt A = 1/1.3 + 1/3.5 + 1/5.7 +........+ 1/(2n - 1)(2n + 1) 
2.A = 2/1.3 + 2/3.5 + 2/5.7 +........+ 2/(2n - 1)(2n + 1) 
2.A = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/(2n - 1) - 1/(2n + 1) 
2.A = 1 - 1/(2n + 1) = 2n/(2n + 1) 
Vậy A = n/(2n + 1)

hình như sai!!