Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR các bt sau có gtri âm với mọi gtri của x
5, E=\(-x^2-3x-5\)
6, F=\(-3x^2-6x-4\)
7, G=\(-5x^2+7x-3\)
\(E=-x^2-3x-5=-\left(x^2+3x+5\right)=-\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)-\frac{11}{4}\\ \)
\(=-\left(x+\frac{3}{2}\right)^2-\frac{11}{4}=-\left(\left(x+\frac{3}{2}\right)^2+\frac{11}{4}\right)\le-\frac{11}{4}< 0\)
\(F=-3x^2-6x-4=-3.\left(x^2+2x+\frac{4}{3}\right)=-3.\left(\left(x^2+2x+1\right)+\frac{1}{3}\right)\)
\(=-3.\left(\left(x+1\right)^2+\frac{1}{3}\right)\le-\frac{3.1}{3}=-1< 0\)
\(-x^2-3x-5\)
\(=-\left(x^2+3x+5\right)\)
\(=-\left[x^2+2x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+5\right]\)
\(=-\left[\left(x+\frac{3}{2}\right)^2-\frac{9}{4}+5\right]\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{11}{4}\)
Vậy biểu thức luôn âm với mọi giá trị của x.
Bài 1:
a: cho -6x+5=0
⇔ x=\(\dfrac{-5}{-6}\)=\(\dfrac{5}{6}\)
vậy nghiệm của đa thức là:\(\dfrac{5}{6}\)
b: cho x2-2x=0 ⇔ x(x-2)
⇒ x=0 / x-2=0 ⇒ x=0/2
Vậy nghiệm của đa thức là :0 hoặc 2
d : cho x2-4x+3=0 ⇔ x2-x-3x+3=0 ⇔ x(x-1) - 3(x-1)=0 ⇔ (x-3)(x-1)
⇒\(\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy nghiệm của đa thức là 1 hoặc 3
f : Cho 3x3+x2=0 ⇔ x2(3x+1)=0
⇒\(\left[{}\begin{matrix}x^2=0\\3x+1=0\end{matrix}\right.\)⇒\(\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\end{matrix}\right.\)
Vậy nghiệm của đa thức là :0 hoặc \(\dfrac{-1}{3}\)
Xin lỗi mình không có thời gian làm hết
e Giả sử x^2 -3x +2=0 => x^2-3x=-2 => x(x-3)=-2=1*-2=-1*2 và
TH1 x=1 => 1(1-3)=1*-2=-2 ( chọn)
TH2 x=-1 => -1(-1-3) =4( loại)
TH3 x=2 => 2(2-3)=-2( chọn)
TH4 x=-2 => -2(-2-3)=10 ( loại)
Vây số giá trị nghiệm của đa thức đó là 1;2
D = 3x/5 <0 => x < 0
E = (x-2)/(x-6) <0 => x<6 ĐK: x khác 6
F < 0 => x< +-1
a)
D= x(x-2/5)
Để D âm thì 0<x<=2/5 ( bé hơn hoặc = đấy)
b) E= x-2/ x-6 ( x khác 6)
Để E âm => 2<x<6
c) F = x2-1/x2 (x khác 0)
=> F= 1-1/x2
Để F âm => 1/x2 > 1 => F ko âm
\(A=\frac{x^2-10x+36}{x-5}=\frac{x^2-10x+25+9}{x-5}\) \(=\frac{\left(x-5\right)^2+9}{x-5}=x-5+\frac{9}{x-5}\)
để \(A\in Z\)
<=> \(\frac{9}{x-5}\in Z\)mà \(x\in Z\)
=> \(x-5\inƯ\left(9\right)\)
=> \(x-5\in\left(1;-1;3;-3;9;-9\right)\)
=> \(x\in\left(6;4;8;2;14;-4\right)\)
học tốt
Bài 5:
a)
\(F=3x^3y+6x^2y^2+3xy^3=3xy(x^2+2xy+y^2)=3xy(x+y)^2\)
\(=3.\frac{1}{2}.\frac{-1}{3}(\frac{1}{2}+\frac{-1}{3})^2=\frac{-1}{72}\)
b)
\(G=x^2y^2+xy+x^3+y^3=(-1)^2(-3)^2+(-1)(-3)+(-1)^3+(-3)^3\)
\(=9+3-1-27=-18\)
Bài 7:
a)
\(x^2+2x=0\Leftrightarrow x(x+2)=0\Rightarrow \left[\begin{matrix} x=0\\ x+2=0\end{matrix}\right. \Rightarrow \left[\begin{matrix} x=0\\ x=-2\end{matrix}\right.\)
Vậy đa thức có nghiệm $x=0; x=-2$
b)
\(-5x^4=0\Leftrightarrow x^4=0\Leftrightarrow x=0\)
Vậy đa thức có nghiệm $x=0$
c)
\(x^2+\sqrt{5}=0\Leftrightarrow x^2=-\sqrt{5}< 0\) (vô lý do bình phương một số thực luôn không âm)
Do đó đa thức vô nghiệm.
d)
\((x^2+3)(-6-4x^4)=0\Rightarrow \left[\begin{matrix} x^2+3=0\\ -6-4x^4=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x^2=-3< 0\\ x^4=\frac{-3}{2}< 0\end{matrix}\right.\) (vô lý)
Do đó đa thức vô nghiệm.
e)
\(3x^8+6=0\Leftrightarrow 3(x^4)^2=-6< 0\) (vô lý)
Do đó đa thức vô nghiệm.
f)
\(x^2+2x-3=0\Leftrightarrow x^2-x+3x-3=0\Leftrightarrow x(x-1)+3(x-1)=0\)
\(\Leftrightarrow (x-1)(x+3)=0\Rightarrow \left[\begin{matrix} x=1\\ x=-3\end{matrix}\right.\)
Đa thức có nghiệm $x=1, x=-3$
ai kb vs tui ko buồn v:))
ta có D= -x^2-x-1 mà -x^2 <0 =>-x^2-x-1 < 0
cm tương tự ta có E,F < 0 với mọi giá trị của x