\(A=\frac{x^2-10x+36}{x-5}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

\(A=\frac{x^2-10x+36}{x-5}=\frac{x^2-10x+25+9}{x-5}\) \(=\frac{\left(x-5\right)^2+9}{x-5}=x-5+\frac{9}{x-5}\)

để \(A\in Z\)

<=> \(\frac{9}{x-5}\in Z\)mà \(x\in Z\)

=> \(x-5\inƯ\left(9\right)\)

=> \(x-5\in\left(1;-1;3;-3;9;-9\right)\)

=> \(x\in\left(6;4;8;2;14;-4\right)\)

học tốt

27 tháng 9 2019

a)\(\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4\)

=> 2x + 7 = 4 

     2x        = 4 - 7 

     2x        = -3

       x        = -3 : 2

       x         = -1,5

   Vậy x = -1,5

20 tháng 9 2018

\(D=\frac{4x+1}{x+3}\inℤ\Leftrightarrow4x+1⋮x+3\)

\(\Rightarrow4x+12-11⋮x+3\)

\(\Rightarrow4\left(x+3\right)-11⋮x+3\)

\(\Rightarrow11⋮x+3\)

\(\Rightarrow x+3\in\left\{-1;1;-11;11\right\}\)

\(\Rightarrow x\in\left\{-4;-2;-14;8\right\}\)

20 tháng 9 2018

a) \(D=\frac{4x+1}{x+3}\)
=> 4x + 1 \(⋮\)( x + 3 ) để D là số nguyên

Mà ( x + 3 ) \(⋮\)( x + 3 ) => 4( x + 3 ) \(⋮\)( x + 3 )
=> [ 4x + 1 - 4( x + 3 ) ] \(⋮\)( x + 3 )
=> [ 4x + 1 - 4x + 12 ]  \(⋮\)( x + 3 )
=> 13  \(⋮\)( x + 3 )
=> \(x+3\inƯ\left(13\right)\)\(=\left\{\pm1;\pm13\right\}\)

x + 3-11-1313
24-1016

Vậy \(x\in\left\{-10;2;4;16\right\}\)Để D là số nguyên
b) \(E=\frac{6x+2}{2x-3}\)
=> 6x + 2 \(⋮\)2x - 3 để E là số nguyên
Mà ( 2x - 3 )  \(⋮\)( 2x - 3 ) => 3( 2x - 3 )  \(⋮\)( 2x - 3 )

=> [ 6x + 2 - 3( 2x - 3 ) ]  \(⋮\)( 2x - 3 )
=> [ 6x + 2 - 6x - 3 ]  \(⋮\)( 2x - 3 )
=> -1  \(⋮\)( 2x - 3 )
=> ( 2x - 3 ) \(\inƯ\left(-1\right)=\left\{\pm1\right\}\)
 

2x - 3-11
2x24
x12

Vậy x \(\in\left\{1;2\right\}\)để E là số nguyên
Còn phần còn lại cậu có thể làm tương tự.

9 tháng 9 2018

a)\(\frac{x+3}{x+5}=7\Leftrightarrow x+3=7\left(x+5\right)\)

\(\Leftrightarrow x+3=7x+35\)

\(\Leftrightarrow-6x=32\)

\(\Leftrightarrow x=-\frac{16}{3}\)

b)\(\frac{2x-1}{3x+5}=-\frac{2}{3}\)

\(\Leftrightarrow3\left(2x-1\right)=-2\left(3x+5\right)\)

\(\Leftrightarrow6x-3=-6x-10\)

\(\Leftrightarrow12x=-7\)

\(\Leftrightarrow x=-\frac{7}{12}\)

9 tháng 9 2018

c)\(\frac{x+1}{4}=\frac{9}{x+1}\Leftrightarrow\left(x+1\right)^2=36\)

\(\Leftrightarrow\left(x+1\right)^2=6^2\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=6\\x+1=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-7\end{cases}}}\)

d)\(\frac{6x-1}{2x+3}=\frac{3x}{x+2}\)

\(\Leftrightarrow\left(6x-1\right)\left(x+2\right)=3x\left(2x+3\right)\)

\(\Leftrightarrow6x^2+12x-x-2=6x^2+9x\)

\(\Leftrightarrow2x=2\Leftrightarrow x=1\)

18 tháng 6 2019

\(a,\frac{-24}{x}+\frac{18}{x}=\frac{-24+18}{x}=\frac{-6}{x}\)

\(\Leftrightarrow x\inƯ(-6)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

\(b,\frac{2x-5}{x+1}=\frac{2x+2-7}{x+1}=\frac{2(x+1)-7}{x+1}=2-\frac{7}{x+1}\)

\(\Leftrightarrow7⋮x+1\Leftrightarrow x+1\inƯ(7)=\left\{\pm1;\pm7\right\}\)

Xét các trường hợp rồi tìm được x thôi :>

\(c,\frac{3x+2}{x-1}-\frac{x-5}{x-1}=\frac{3x+2-x-5}{x-1}=\frac{2x+7}{x-1}=\frac{2x-2+9}{x-1}=\frac{2(x-1)+9}{x-1}=2+\frac{9}{x-1}\)

\(\Leftrightarrow9⋮x-1\Leftrightarrow x-1\inƯ(9)=\left\{\pm1;\pm3;\pm9\right\}\)

\(\Leftrightarrow x\in\left\{2;0;4;-2;10;-8\right\}\)

d, TT

20 tháng 6 2019

YRTSCEYHTFGELCWAMTR.HUNYLA.INBYRUVIQYQNTUNHCUYTBSEUITBVYIQNVIALVTVANYUVLNAUTGUYVTUEVUEATWEHVUTSIOERHUYDBUHEYVGYEGYEHTHGERTGVRYT

a) Ta có: \(-2xy^2\cdot\left(x^3y-2x^2y^2+5xy^3\right)\)

\(=-2x^4y^3+4x^3y^4-10x^2y^5\)

b) Ta có: \(\left(-2x\right)\cdot\left(x^3-3x^2-x+1\right)\)

\(=-2x^4+6x^3+2x^2-2x\)

c) Ta có: \(3x^2\left(2x^3-x+5\right)\)

\(=6x^5-3x^3+15x^2\)

d) Ta có: \(\left(-10x^3+\frac{2}{5}y-\frac{1}{3}z\right)\cdot\left(-\frac{1}{2}xy\right)\)

\(=5x^4y-\frac{1}{5}xy^2+\frac{1}{6}xyz\)

e) Ta có: \(\left(3x^2y-6xy+9x\right)\cdot\left(-\frac{4}{3}xy\right)\)

\(=-4x^3y^2+8x^2y^2-12x^2y\)

f) Ta có: \(\left(4xy+3y-5x\right)\cdot x^2y\)

\(=4x^3y^2+3x^2y^2-5x^3y\)

5 tháng 6 2019

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)

\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu

\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)

\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)

Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

5 tháng 6 2019

Bài 1b) có thể giải gọn hơn nhuư thế này