Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
3) Ta có:\(\sqrt{2000}< 2001\)
Áp dụng BĐT AM-GM:
\(\sqrt{1999.\sqrt{2000}}< \sqrt{1999.2001}< \frac{1999+2001}{2}=2000\)
Tương tự ta có:
\(\sqrt{2\sqrt{3\sqrt{4--...\sqrt{1999\sqrt{2000}}}}}< \sqrt{2\sqrt{3\sqrt{4=.\sqrt{1999.2001}}}}< \sqrt{2\sqrt{3\sqrt{4-\sqrt{1998.2000}}}}--< \sqrt{2.4}< 3\)
1)
Với ab + bc + ac = 1 có:
\(a^2+1=a^2+ab+ac+bc=a\left(a+b\right)+c\left(a+b\right)=\left(a+c\right)\left(a+b\right)\)
\(b^2+1=b^2+bc+ca+ab=b\left(b+c\right)+a\left(b+c\right)=\left(a+b\right)\left(b+c\right)\)
\(c^2+1=c^2+bc+ca+ab=c\left(b+c\right)+a\left(b+c\right)=\left(a+c\right)\left(b+c\right)\)
Do đó: \(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)
\(=\sqrt{\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(c+b\right)}\)
\(=\sqrt{\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2}\)
\(=|\left(a+b\right)\left(a+c\right)\left(b+c\right)|\)
Vì \(a,b,c\in Q\Rightarrow|\left(a+b\right)\left(a+c\right)\left(b+c\right)|\in Q\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(ab+bc+ca=1\)\(\Rightarrow\)\(\hept{\begin{cases}a^2b^2+b^2c^2+c^2a^2=1-2abc\left(a+b+c\right)\\\left(a+b+c\right)^2-2=a^2+b^2+c^2\end{cases}}\)
\(A=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{a^2b^2c^2+a^2b^2+b^2c^2+c^2a^2+a^2+b^2+c^2+1}\)
\(A=\sqrt{a^2b^2c^2-2abc\left(a+b+c\right)+\left(a+b+c\right)^2}\)
\(A=\sqrt{\left(abc-a-b-c\right)^2}=\left|abc-a-b-c\right|\)
Do a, b, c là các số hữu tỉ nên \(\left|abc-a-b-c\right|\) là số hữu tỉ
b) \(B=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\sqrt{1+\sqrt{1+\sqrt{1+...+\sqrt{1}}}}=1\)
\(B< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+2}}}}=\sqrt{2+2}=2\)
=> \(1< B< 2\) B không là số tự nhiên
c) câu này có ng làm r ib mk gửi link
à chỗ câu b) mình nhầm tí nhé
\(B=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\sqrt{1+\sqrt{1+\sqrt{1+...+\sqrt{1}}}}>1\)
Sửa dấu "=" thành ">" hộ mình
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)
\(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)
nhân theo vế của ( 1 ) ; ( 2 ) , ta có :
\(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)
\(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)
rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :
\(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)
\(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\)
\(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)
A = 2017
( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :) )
2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)
\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)
\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)
\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)
Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)
\(\Leftrightarrow x=2015;y=2016;z=2017\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Giả sử $\sqrt{2}+\sqrt{3}=a$ là một số hữu tỉ.
\(\Rightarrow (\sqrt{2}+\sqrt{3})^2=a^2\)
\(\Leftrightarrow 5+2\sqrt{6}=a^2\Rightarrow \sqrt{6}=\frac{a^2-5}{2}\) là số hữu tỉ.
Đặt \(\sqrt{6}=\frac{a^2-5}{2}=\frac{m}{n}(m,n\in\mathbb{Z}^+; (m,n)=1)\)
\(\Rightarrow 6=\frac{m^2}{n^2}\Rightarrow m^2=6n^2\vdots 3\)
\(\Rightarrow m\vdots 3\Rightarrow 6n^2=m^2\vdots 9\Rightarrow n^2\vdots 3\Rightarrow n\vdots 3\). Vậy $m,n$ cùng có ước chung là $3$ (vô lý vì $(m,n)=1$). Do đó điều giả sử là sai. Nghĩa là $\sqrt{2}+\sqrt{3}$ không phải số hữu tỉ.
---------------------------------
Giả sử $\sqrt{2}+\sqrt{3}+\sqrt{5}=b$ là số hữu tỉ
\(\Leftrightarrow \sqrt{2}+\sqrt{3}=b-\sqrt{5}\)
\(\Rightarrow 5+2\sqrt{6}=b^2+5-2b\sqrt{5}\) (bình phương 2 vế)
\(\Leftrightarrow 2\sqrt{6}=b^2-2b\sqrt{5}\)
\(\Rightarrow 24=b^4+20b^2-4b^3\sqrt{5}\)
\(\Leftrightarrow \sqrt{5}=\frac{b^4+20b^2-24}{4b^3}\) là số hữu tỉ.
Đặt \(\sqrt{5}=\frac{m}{n}(m,n\in\mathbb{Z}^+, (m,n)=1)\)
\(\Rightarrow 5=\frac{m^2}{n^2}\Rightarrow m^2=5n^2\)
\(\Rightarrow m^2\vdots 5\Rightarrow m\vdots 5\Rightarrow 5n^2=m^2\vdots 25\Rightarrow n^2\vdots 5\Rightarrow n\vdots 5\)
Như vậy $m,n$ có ước chung là $5$ (vô lý vì $(m,n)=1$). Do đó điều giả sử là sai. Tức là $\sqrt{2}+\sqrt{3}+\sqrt{5}$ không là số hữu tỉ.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(\Delta=b^2-4ac=\left(a+c\right)^2-4ac=\left(a-c\right)^2\)
\(\Rightarrow x_1=\frac{-b+a-c}{2a};x_2=\frac{-b-a+c}{2a}\in Q.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b) Đặt a+b=s và ab=p. Ta có: \(a^2+b^2=4-\left(\frac{ab+2}{a+b}\right)^2\Leftrightarrow\left(a+b\right)^2-2ab+\frac{\left(ab+2\right)^2}{\left(a+b\right)^2}=4\)
\(\Leftrightarrow s^2-2p+\frac{\left(p+2\right)^2}{s^2}=4\Leftrightarrow s^4-2ps^2+\left(p+2\right)^2=4s^2\)
\(\Leftrightarrow s^4-2s^2\left(p+2\right)+\left(p+2\right)^2=0\Leftrightarrow\left(s^2-p-2\right)^2=0\)
\(\Leftrightarrow s^2-p-2=0\Leftrightarrow p+2=s^2\Leftrightarrow\sqrt{p+2}=\left|s\right|\Leftrightarrow\sqrt{ab+2}=\left|a+b\right|\)
Vì a, b là số hữu tỉ nên |a+b| là số hữu tỉ. Vậy \(\sqrt{ab+2}\)là số hữu tỉ
![](https://rs.olm.vn/images/avt/0.png?1311)
4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)
\(6\sqrt{55}\) là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa \(\sqrt{55}\)
Đặt \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\) với \(a,b\in N\)
\(\Rightarrow a+b=6\)
Xét các TH:
a = 0 => b = 6
a = 1 => b = 5
a = 2 => b = 4
a = 3 => b = 3
a = 4 => b = 2
a = 5 => b = 1
a = 6 => b = 0
Từ đó dễ dàng tìm đc x, y
\(\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
\(=\sqrt{2+2\cdot\sqrt{2}\cdot1+1}+\sqrt{2^2-2\cdot2\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=\sqrt{2}+1+2-\sqrt{2}=3\)
Vậy B là số hữu tỉ
\(B=\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
= \(\sqrt{\left(\sqrt{2}+1\right)}^2+\sqrt{\left(\sqrt{2}-2\right)^2}\)
= \(\left|\sqrt{2}+1\right|+\left|\sqrt{2}-2\right|\)
= \(\sqrt{2}+1+2-\sqrt{2}\) ( vì căn 2 < 2 )
= 3 ( đpcm)