\(A=\frac{2014^2}{2}+\frac{2014^2}{3}...+\frac{2014^2}{2015}\)không là số tự nhiên
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2015

\(A=\frac{1+2+3+..+2015}{2014^2}=\frac{2015.2016:2}{4056196}=\frac{2031120}{4056196}\)

VÌ  2031120 ko chia hết cho 4056196 => A ko là stn

30 tháng 5 2015

\(A=\frac{1+2+...+2015}{2014^2}=\frac{\left(2015+1\right).\left[\left(2015-1\right)+1\right]:2}{2014^2}=\frac{2031120}{4056196}=0,500....\) không phải là số tự nhiên.

1 tháng 9 2016

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)

1 tháng 7 2016

Sai rồi nhé bạn 

1 tháng 7 2016

trà my Thế bạn làm thế nào

2 tháng 5 2019

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(< \frac{1}{1}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{1}+\frac{1}{1}=2\)

\(\Rightarrow\)\(A< 2\left(đpcm\right)\)

chúc bạn học tốt!!!

2 tháng 5 2019

Bài 6 :

 2S = 6 + 3 + 3/2 + ... + 3/2^8

 2S = 6 - 3/2^9 + S

   S = 6 - 3/2^9

  Vậy S = 6 - 3/2^9

Bài 7 :

  Ta có : 

    A = 1/1 + 1/2^2 + 1/3^2 + ... + 1/50^2 < 1 + 1/(1x2) + 1/(2x3) + ... + 1/(49x50) = 1 + 1 - 1/50 < 1 + 1 = 2

  =)  A < 2

   Vậy A < 2

Bài 8 :

  Do A = 1 + 2/(2015^2014 - 1 ) và B = 1 + 2/(2015^2014 - 3 ) mà 2/(2015^2014 -1) < 2/(2015^2014 - 3 )

 =) A < B

   Vậy A < B

Bài 9:

  Do 196/197 > 196/(197+198) và 197/198 > 197/(197+198)

  =)  A > B

   Vậy A > B