K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

\(a\left(a+2\right)< \left(a+1\right)^2\)

\(\Leftrightarrow a^2+2a< a^2+2a+1\)

\(\Leftrightarrow0< 1\)(luôn đúng)

Do bđt cuối luôn đúng nên bđt ban đầu đc cm

7 tháng 8 2016

Do a2 + 2a < a2 + 2a + 1

=> a.(a + 2) < a2 + a + a + 1

=> a.(a + 2) < a.(a + 1) + (a + 1)

=> a.(a + 2) < (a + 1)2 (đpcm)

13 tháng 8 2016
Bạn có thể ghi đề rõ hơn được không nhìn cái đề mình đọc không hiểu
7 tháng 8 2016

Ta có ; \(A=\frac{3x^2-2x-1}{\left(x+1\right)^2}\) .Đặt \(y=x+1\Rightarrow x=y-1\), thay vào A :

\(A=\frac{3\left(y-1\right)^2-2\left(y-1\right)-1}{y^2}=\frac{3y^2-8y+4}{y^2}=\frac{4}{y^2}-\frac{8}{y}+3\)

Lại đặt \(t=\frac{1}{y}\)\(A=4t^2-8t+3=4\left(t^2-2t+1\right)-1=4\left(t-1\right)^2-1\ge-1\)

Dấu "=" xảy ra khi và chỉ khi t = 1 <=> y = 1 <=> x = 0

Vậy A đạt giá trị nhỏ nhất bằng -1 khi x = 0 

14 tháng 8 2021

 √(3 - √(5)) × (3 + √(5)) / √10+√2 = 2.86142715787

14 tháng 8 2021

mình cần rút gọn cơ

 

13 tháng 8 2021

sửa hộ mình 

pt có 2 nghiệm phân biệt 

\(a_1=-5-\sqrt{24};a_2=-5+\sqrt{24}\)

13 tháng 8 2021

giải phương trình hả bạn ? 

\(a^2+10a+1=0\)

\(\Delta'=25-1=24>0\)

pt có 2 nghiệm pb 

\(x_1=\frac{5-\sqrt{24}}{1}=5-\sqrt{24};x_2=5+\sqrt{24}\)

Ta có: \(\dfrac{\sqrt{3-\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)

\(=\dfrac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\sqrt{5}+2}\)

\(=\dfrac{\left(\sqrt{5}-1\right)\cdot\left(\sqrt{5}+1\right)^2}{4\cdot\left(\sqrt{5}+1\right)}\)

\(=\dfrac{4}{4}=1\)