K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2016

Nếu a <=0. ĐPCM đương nhiên đúng

Nếu a>0 thì:

a4 + 1 >= 2a2 (Cosy) => a4 + 3 >= 2a2 + 2 = 2(a2 + 1) >= 2*2a (Cosy) = 4a đpcm

Dấu "=" khi a = 1.

17 tháng 2 2018

Ta có: \(\left(a+1\right)^2=\left(a+1\right)\left(a+1\right)=a^2+2a+1\)

Theo bài ra ta có: \(a^2+2a+1\ge4a\)

Ta phải chứng minh: \(a^2+1\ge2a\)

=>\(a^2-a+1\ge a\)

=> \(a.\left(a-1\right)+1>a\)

=> \(a.\left(a-1\right)\ge a-1\)

Với a=0 và a=1 thì ta sẽ đc giá trị tương ứng \(a.\left(a-1\right)=a-1\)

Còn với \(a\ne0;1\)thì a.(a-1) > a-1

17 tháng 2 2018

Xét hiệu \(\left(a+1\right)^2-4a\)

\(=a^2+2a+1-4a=a^2-2a+1\)

\(=\left(a-1\right)^2\ge0\)( Mình không chắc câu này )

a+1/a= a.a/a+1/a=a^2+1/a

vì a>3=>a^2+1/a>10/3

đoán vậy, em mới lp 6 nhưng trả lời cho vui

3 tháng 6 2018

Vì a>3=>a2>9=>a2+1>10

Ta có :\(a+\frac{1}{a}=\frac{a^2+1}{a}>\frac{10}{3}\)

=>ĐCCM

4 tháng 7 2019

\(\Leftrightarrow\frac{1}{1+x^2}-\frac{1}{1+xy}+\frac{1}{1+y^2}-\frac{1}{1+xy}\ge0.\)

\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{x\left(y-x\right)\left(1+y^2\right)+y\left(x-y\right)\left(1+x^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{\left(x-y\right)\left(y+x^2y-x-xy^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\left(lđ\forall x,y\ge1\right)\)

Dấu "=" xra khi x=y=1

13 tháng 5 2021

Bài này `a=b=2=>ab=a+b` nhé.=>Phải là `ab>=a+b`

`ab>=a+b`

`<=>2ab>=2a+2b`

`<=>ab-2a+ab-2b>=0`

`<=>a(b-2)+b(a-2)>=0`

Mà `a>=2,b>=2`

`=>đpcm`

AH
Akai Haruma
Giáo viên
15 tháng 5 2018

Lời giải:

Áp dụng BĐT Cauchy:

\(\frac{a^3}{bc}+b+c\geq 3\sqrt[3]{a^3}=3a\)

\(\frac{b^3}{ca}+c+a\geq 3\sqrt[3]{b^3}=3b\)

\(\frac{c^3}{ab}+a+b\geq 3\sqrt[3]{c^3}=3c\)

Cộng theo vế thu được:

\(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}+2(a+b+c)\geq 3(a+b+c)\)

\(\Rightarrow \frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\geq a+b+c\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c\)

15 tháng 5 2018

Akai Haruma cảm ơn thầy /cô

15 tháng 7 2019

1) Đề sai, thử với x = -2 là thấy không thỏa mãn.

Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:

\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)

\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)

Không thể xảy ra dấu đẳng thức.

31 tháng 5 2018

Ta có: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{2\left(a+b+c\right)}\)

\(\Rightarrow\left(a^2+b^2+c^2\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{3}{2}\left(a+b+c\right)\)