![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Đề sai, thử với x = -2 là thấy không thỏa mãn.
Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:
\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)
\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)
Không thể xảy ra dấu đẳng thức.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{a+1}+\frac{1}{b+1}\)
\(=\frac{b+1}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{\left(a+1\right)\left(b+1\right)}\)
\(=\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}\)
\(=\frac{3}{ab+a+b+1}\)
\(=\frac{3}{ab+2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
xét vế trái ta có (nhân vào )
a/a + a/b + a/c + b/a + b/b + b/c + c/a + c/b +c/c >= 9
<=> 3 + ( a/b +b/a ) + (b/c + c/b )+ (c/a +a/c) >=9
áp dụng bất đẳng thức phụ : a/b + b/a >=2 , b/c + c/b >= 2 , a/c +c/a >=2 ta được
3 +2 +2+2 >=9
=> đpcm
ta CM bất đẳng thức phụ a/b +b/a >=2 nhé !
vì a/b +b/a >=2 nên ta xét hiệu:
a/b + b/c - 2 >= 0
ta quy đồng mẫu các phân số :
<=> a2 /ab + b2/ab - 2ab/ab >= 0
<=> (a2 + b2 - 2ab) / ab = (a-b)2 /ab >=0
dấu = xảy ra khi a-b =0 <=> a=b
nên a/b + b/a - 2 >=0
<=> a/b + b/a >= 2 dấu = xảy ra khi a=b
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{2\left(a+b+c\right)}\)
\(\Rightarrow\left(a^2+b^2+c^2\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{3}{2}\left(a+b+c\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt A=\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(A+3=\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1+\dfrac{c}{a+b}+1\)
\(A+3=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}\)
\(A+3=\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)
CM:\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)(tự cm)
Áp dụng:\(\Rightarrow A+3\ge\left(a+b+c\right)\left(\dfrac{9}{a+b+b+c+c+a}\right)=\dfrac{9}{2}\)
\(\Rightarrow A\ge\dfrac{3}{2}\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a+1/a= a.a/a+1/a=a^2+1/a
vì a>3=>a^2+1/a>10/3
đoán vậy, em mới lp 6 nhưng trả lời cho vui
Vì a>3=>a2>9=>a2+1>10
Ta có :\(a+\frac{1}{a}=\frac{a^2+1}{a}>\frac{10}{3}\)
=>ĐCCM