K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

sửa đề: \(a^3+b^3+c^3=3abc\)

Giải:

\(a^3+b^3+c^3=3abc\\ \Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\\ \Leftrightarrow\left(a+b+c\right)^3-3c\left(a+b\right)\left(a+b+c\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b+c\right)^2-3c\left(a+b\right)-3ab\right]=0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(a-c\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)(đpcm)

17 tháng 5 2019

Ta có: \(a=b=c\Rightarrow\hept{\begin{cases}a^3=abc\\a^3=b^3=c^3\end{cases}}\)

Vì \(a^3=b^3=c^3\Rightarrow a^3+b^3+c^3=3a^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)

17 tháng 5 2019

\(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3=-c^3\)

\(\Leftrightarrow a^3+3ab\left(a+b\right)+b^3+c^3=0\)

\(\Leftrightarrow a^3-3abc+b^3+c^3=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

1 tháng 7 2018

\(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left[\left(a^3+b^3\right)+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\frac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2}=0\)

Vì a+b+c=0 \(\hept{\begin{cases}a>0\\b>0\\c>0\end{cases}}\)

Do đó: \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Rightarrow a=b=c}\)

Miyuki Misaki cm ngược rồi 
Ta có : a + b + c = 0 

<=> a + b = -c {...........}

<=> (a + b)3 = -c3

<=> a3 + b3 + 3ab(a + b) = -c3

<=> a3 + b3 + c3 = -3ab(a + b) 

<=> a3 + b3 + c3 = -3ab(-c) {vì a + b = -c}

<=>  a3 + b3 + c3 = 3abc

31 tháng 1 2019

\(\frac{3}{a+2b}=\frac{1}{3}.\frac{9}{a+b+b}\le\frac{1}{3}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)\)

Tương tự:\(\frac{3}{b+2c}\le\frac{1}{3}\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\frac{3}{c+2a}\le\frac{1}{3}\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\right)\)

Cộng theo vế ta được:

\(\frac{3}{a+2b}+\frac{3}{b+2c}+\frac{3}{c+2a}\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

31 tháng 12 2015

 ta co:  a/(1+b²)=(a+ba²-ab²)/(1+b²)=(a(1+b²)-a...‡  

Tuong tu: b/(1+c²)>=b-bc/2; c/(1+a²)>=c-ac/2.  

=> a/(1+b²)+b/(1+c²)+c/(1+a²)>=a+b+c-1/2(ab...‡  

Ma: 3(ab+bc+ca)<=(a+b+c)²=9=> ab+bc+ca <=3  

=>-1/2(ab+bc+ca)>=-3/2  

=> a+b+c-1/2(ab+bc+ca) >=3-3/2=3/2  

=> a/(1+b²)+b/(1+c²)+c/(1+a²)>= 3/2(dpcm)  

Dau "=" say ra <=> a=b=c=1