K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2022

\(A=n^3+3n^2-n-3\)

\(A=n^2\left(n+3\right)-\left(n+3\right)\)

\(A=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

Vì n thuộc N lẻ => n - 1 chẵn ; n + 1 chẵn và n -1 ; n + 1 là 2 số chẵn liên tiếp

Mà tích 2 số chẵn liên tiếp chia hết cho 8

=> A chia hết cho 8 với n thuộc N lẻ

2 tháng 8 2022

em cần gấp

 

20 tháng 6 2016

A = n3 + 3n2 - n - 3

A = n2 . (n + 3) - (n + 3)

A = (n + 3) . (n2 - 1)

A = (n + 3) . (n - 1) . (n + 1)

Vì n lẻ nên n + 1 và n + 3 là 2 số chẵn liên tiếp => (n + 1) . (n + 3) chia hết cho 8

=> A chia hết cho 8

1 tháng 10 2017

\(A=n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

Do n lẻ nên n=2k+1 (k thuộc N)

=>\(A=\left(n-1\right)\left(n+1\right)\left(n+3\right)=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\left(2k+2\right)\left(2k+4\right)=2k.2\left(k+1\right).2\left(k+2\right)=8k\left(k+1\right)\left(k+2\right)\) chia hết cho 8

Vậy ta có đpcm

21 tháng 6 2017

a)Ta có:a2(a+1)+2a(a+1)=(a2+2a)(a+1)

=a(a+1)(a+2)

Vì a(a+1)(a+2) là tích của 3 thừa số nguyên liên tiếp(a thuộc Z) nên trong tích luôn tồn tại 1 thừa số \(⋮2\);1 thừa số \(⋮3\)

mà (2;3)=1

=>a(a+1)(a+2)\(⋮2.3\)=6 hay a2(a+1)+2a(a+1)\(⋮6\)

b)Ta có:

a(2a-3)-2a(a-1)=2a2-3a-2a2+2a=-a

cái này có phải đề sai k vậy bạn

21 tháng 6 2017

đúng mà bn

14 tháng 6 2017

\(a,n^5-5n^3+4n=n\left(n^4-5n^2+4\right)=n\left(n^4-n^2-4n^2+4\right)=n\left(n^2-1\right)\left(n^2-4\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\)(chia hết cho 1;2;3;4;5)\(\Rightarrowđpcm\)

b,
A = n^3-3n^2-n+3 = n^2(n - 3) - (n-3) = (n -3)(n-1)(n+1)
vì n lẻ nên:
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8
(n - 3) là số chẵn chia hết cho 2
=> A chia hết cho 16(*)
mặt khác:
A = n^3-3n^2-n+3 = n^3 - n - 3(n^2 - 1) = n(n+1)(n-1) - 3(n^2-1)
xét các trường hợp:
n = 3k => n(n+1)(n-1) chia hết cho 3 => A chia hết cho 3
n = 3k + 1 => (n -1) chia hết cho 3 => A chia hết cho 3
n = 3k + 2 => (n+1) = 3k + 3 chia hết cho 3 => A chia hết cho 3
=> A chia hết cho 3 (**)
(*) và (**) => A chia hết cho 3.16 = 48 (3,16 là 2 số nguyên tố cùng nhau).

14 tháng 6 2017

Câu hỏi của CoRoI - Toán lớp 8 - Học toán với OnlineMath

17 tháng 9 2019

a) thay 2k+1 vào biểu thức ta có

a)=4k^2+4k+1+8k+4+3

=4k(k+1) + 8k +8

có: k(k+1) là 2 số nguyên liên tiếp => chia hết cho 2 => 4k(k+1) chia hết cho 8

có: 8k;8 chia hết 8

=>n^2+4n+3 chia hết cho 8

18 tháng 9 2019

b.Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath

16 tháng 11 2015

a. Ta có:

\(\left(n+3\right)^2-\left(n-1\right)^2=\left(n+3-n+1\right)\left(n+3+n-1\right)=4\left(2n+2\right)=8n+8=8\left(n+1\right)\)chia hết cho \(8\)

b. Đặt \(M=n^3+3n^2-3-n\), ta có:

\(M=n^2\left(n+3\right)-\left(n+3\right)=\left(n+3\right)\left(n^2-1\right)=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

Vì  \(n\) là một số lẻ nên 

 \(\left(n-1\right)\left(n+1\right)\) chia hết cho \(8\) (vì là tích của hai số chẵn liên tiếp)

và  \(n+3\) là số chẵn nên chia hết cho \(2\) 

Do đó: \(M\)chia hết cho  \(8.2=16\)  \(\left(\text{*}\right)\)

Mặt khác: \(M=n^3+3n^2-3-n=n\left(n^2-1\right)+3\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)+3\left(n^2-1\right)\)

Xét trường hợp:

+)  \(n=3k\Rightarrow n\left(n-1\right)\left(n+1\right)\) chia hết cho  \(3\)  \(\Rightarrow M\) chia hết cho  \(3\)

+) \(n=3k+1\Rightarrow\left(n-1\right)\) chia hết cho  \(3\)  \(\Rightarrow M\) chia hết cho  \(3\)

+) \(n=3k+2\Rightarrow\left(n+1\right)\) chia hết cho \(3\)  \(\Rightarrow M\) chia hết cho  \(3\)

nên  \(M\) chia hết cho  \(3\) \(\left(\text{**}\right)\)

Lại có: \(\left(16;3\right)=1\) \(\left(\text{***}\right)\)

Từ \(\left(\text{*}\right)\) , \(\left(\text{**}\right)\) ,  \(\left(\text{***}\right)\) suy ra  \(M\) chia hết  \(48\) với \(n\) lẻ

16 tháng 11 2015

tick cho mình rồi mình làm cho

a: \(=n\left(n^4-5n^2+4\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n+2\right)\left(n-2\right)\)

Vì đây là 5 số liên tiếp

nên A chia hết cho 5!

=>A chia hết cho 120

b: \(B=n^2\left(n-3\right)-\left(n-3\right)=\left(n-3\right)\left(n-1\right)\left(n+1\right)\)

\(=\left(2k+1-3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=\left(2k-2\right)\left(2k+2\right)\cdot2k\)

\(=8k\left(k-1\right)\left(k+1\right)⋮48\)

22 tháng 8 2017

\(A=N^5-N=N\left(N^4-1\right)=N\left(N^2-1\right)\left(N^2+1\right)=N\left(N-1\right)\left(N+1\right)\left(N^2+1\right)\)

NẾU N:5 DƯ 1\(\Rightarrow N=5K+1\)

\(\Rightarrow A=N.\left(5K+1-1\right)\left(N+1\right)\left(N^2+1\right)=N.5K.\left(N+1\right)\left(N^2+1\right)\)

...

Đến đây thì bí rồi nhé

6 tháng 11 2015

dat cau hoi muon ko ai tra loi la phai