Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một số có hai chữ số tận cùng bằng 25 \(⋮\) 25. Một số \(⋮\) 4 và 25 thì \(⋮\) 100( 4 và 25 nguyên tố cùng nhau)
Mặt khác: \(\left(2^{10}\right)+1⋮25\)và \(2^9+2^{99}⋮4\)
Ta có:
\(2^9-2^{99}=\left(2^9+2^{19}\right)-\left(2^{19}+2^{29}\right)+\left(2^{29}+2^{39}\right)-...+...-\left(2^{79}+2^{89}\right)+\left(2^{89}+2^{99}\right)\)
\(=\left(1+2^{10}\right)\cdot\left(2^9-2^{19}+2^{29}-2^{39}+....+2^{99}\right)\)
\(\Rightarrow2^9+2^{99}⋮25\)
\(\Rightarrow2^9+2^{99}⋮100\)
Bài làm
Cách 1: ta có:
A= 2^9 +2^99=2^2(2^7 + 2^97)=4((2^7 + 2^97) đồng dư 0 (mod 4).
2^5 = 32 đồng 7 (mod 25)
=> 2^10 đồng dư 7^2 (mod 25) đồng dư -1(mod 25).
mặt khác:
A= 2^9 +2^99 =2^9(1+2^90)
mà (1+2^90) = 1 + (2^10)^9 đồng dư 1 -1=0 (mod 25)
=> 2^9 +2^99 đồng dư 0 (mod 25)
BSCNN của 4 và 25 =100
=> A đồng dư 0 (mod 100)
hay A chia hết cho 100.
vao Chứng minh rằng 2^9+2^99 chia hết cho 100 toán dành cho ...
b: \(2^{70}+3^{70}=4^{35}+9^{35}=\left(4+9\right)\cdot A⋮13\)
Lê Xuân Thiên
29 + 299 = 29 + (211)9 = (2 + 211)(28 - 27.211 + ... - 2.277 + 288)
Thừa số thứ nhất 2 + 211 = 2050
Thừa số thứ hai chứa toàn các số chẵn, tức là có dạng 2A.
Do đó: 29 + 299 = 2050.2A = 4100A. Vậy số A = 29 + 299 chia hết cho 100.
\(A=2^9+9^{99}\)
\(A=\left(2^4\right)^2.2+\left(9^2\right)^{49}.9\)
\(A=\left(...6\right)^2.2+\left(...1\right)^{49}.9\)
\(A=\left(....2\right)+\left(...9\right)̸\)
\(A=\left(...1\right)\)không chia hết cho 10
hả , vậy là ko chia hết sao, kì vậy