Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có : |3-x|=3-x nếu 3-x> hoặc =0 hay x> hoặc =3; |3-x|=x-3 nếu 3-x<0 hay x<3
Th1: Với x > hoặc =3 thì ta có:3-x=1-3x=>1-3x+x=3=>1-2x=3=>2x=-2=>x=-1(loại vì không thỏa mãn điều kiện x>3)
Th2: với x<3 thì ta có: x-3=1-3x=>x-1+3x=3=>4x=4=>x=1(thỏa mãn điều kiện x<3)
vậy x=1
\(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{120}\left(a\right)\)
\(\Rightarrow A=\left(\dfrac{1}{101}+\dfrac{1}{102}+...\dfrac{1}{125}\right)+\left(\dfrac{1}{126}+\dfrac{1}{127}+...\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...\dfrac{1}{175}\right)+\left(\dfrac{1}{176}+\dfrac{1}{177}+...\dfrac{1}{200}\right)\)
\(\Rightarrow A>25.\dfrac{1}{125}+25.\dfrac{1}{150}+25.\dfrac{1}{175}+25.\dfrac{1}{200}\)
\(\Rightarrow A>\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\)
\(\Rightarrow A>\dfrac{168+140+120+105}{840}=\dfrac{533}{840}>\dfrac{5}{8}\left(\dfrac{533}{840}>\dfrac{525}{840}\right)\)
\(\Rightarrow A>\dfrac{5}{8}\left(1\right)\)
\(\left(a\right)\Rightarrow A=\left(\dfrac{1}{101}+...\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+...\dfrac{1}{140}\right)+\left(\dfrac{1}{141}+...\dfrac{1}{160}\right)+\left(\dfrac{1}{161}+...\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+...\dfrac{1}{200}\right)\)
\(\Rightarrow A< 20.\dfrac{1}{100}+20.\dfrac{1}{120}+20.\dfrac{1}{140}+20.\dfrac{1}{160}+20.\dfrac{1}{180}\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{504+420+360+315+280}{2520}=\dfrac{1879}{2520}< \dfrac{3}{4}\left(\dfrac{1879}{2520}< \dfrac{1890}{2520}\right)\)
\(\Rightarrow A< \dfrac{3}{4}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{5}{8}< A< \dfrac{3}{4}\left(dpcm\right)\)
Ta có:
- \(220\equiv0\left(mod2\right)\Rightarrow220^{119^{60}}\equiv0\left(mod2\right)\)
\(119\equiv1\left(mod2\right)\Rightarrow119^{69^{220}}\equiv1\left(mod2\right)\)
\(69\equiv-1\left(mod2\right)\Rightarrow69^{220^{119}}\equiv-1\left(mod2\right)\)
Vậy \(A=220^{119^{60}}+119^{69^{220}}+69^{220^{199}}\equiv0+1+\left(-1\right)\left(mod2\right)\)
hay \(A⋮2\left(1\right)\)
- \(220\equiv1\left(mod3\right)\Rightarrow220^{119^{60}}\equiv1\left(mod3\right)\)
\(119\equiv-1\left(mod3\right)\Rightarrow119^{69^{220}}\equiv-1\left(mod3\right)\)
\(69\equiv0\left(mod3\right)\Rightarrow69^{220^{119}}\equiv0\left(mod3\right)\)
Vậy \(A=220^{119^{60}}+119^{69^{220}}+69^{220^{119}}\equiv1+\left(-1\right)+0\left(mod3\right)\)
hay \(A⋮3\left(2\right)\)
- \(220\equiv-1\left(mod17\right)\Rightarrow220^{119^{60}}\equiv-1\left(mod17\right)\)
\(119\equiv0\left(mod17\right)\Rightarrow119^{69^{220}}\equiv0\left(mod17\right)\)
\(69\equiv1\left(mod17\right)\Rightarrow69^{220^{119}}\equiv1\left(mod17\right)\)
Vậy \(A=220^{119^{60}}+119^{69^{220}}+69^{220^{119}}\equiv-1+0+1\left(mod17\right)\)
hay \(A⋮17\left(3\right)\)
Từ (1); (2); (3), do 2; 3; 17 nguyên tố cùng nhau từng đội một nên
\(A⋮2.3.17=102\left(đpcm\right)\)
\(A=3^{101}+3^{102}+3^{103}+...+3^{200}\)
\(3A=3^{102}+3^{103}+3^{104}+...+3^{201}\)
\(3A-A=\left(3^{102}+3^{103}+3^{104}+3^{201}\right)-\left(3^{101}+3^{102}+3^{103}+...+3^{201}\right)\)
\(2A=3^{201}-3^{101}\)
\(2A=3^{100}\)
\(\Rightarrow A=3^{100}:2\)
\(A=3^{101}+3^{102}+3^{103}+...+3^{200}\)
\(A=3^{101}+3^{102}+3^{103}+3^{104}+...+3^{197}+3^{198}+3^{199}+3^{200}\)
\(A=3^{100}\left(3+3^2+3^3+3^4\right)+...+3^{196}\left(3+3^2+3^3+3^4\right)\)
\(A=120\left(3^{100}+...+3^{196}\right)⋮120\)
Ta có:
\(220\) chia cho 3 dư 1
\(\Rightarrow220^{11969}\) chia 3 dư 1.
\(119\) chia 3 dư (-1)
\(\Rightarrow119^{69220}\)chia 3 dư 1
\(69\)chia hết cho 3
\(\Rightarrow69^{220119}\)chia hết cho 3
\(\Rightarrow A\) chia cho 3 dư 2
Vậy đề sai. Vì A không chia hết cho 3 sao có thể chia hết cho 102 được.