Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=n^2+4n+3>n^2+2n+1=\left(n+1\right)^2\)
\(A=n^2+4n+3< n^2+4n+4=\left(n+2\right)^2\)
\(\Rightarrow\left(n+1\right)^2< A< \left(n+2\right)^2\)
Vậy A không phải là số chính phương.
Dễ thấy\(\hept{\begin{cases}\left(n+1\right)^2=n^2+2n+1< A\\A< n^2+4n+4=\left(n+2\right)^2\end{cases}}\)
Suy ra A k là SCP(ĐPCM)
ta có
\(A=n^6-n^4+2n^3+2n^2=\left[\left(n^3\right)^2+2n^3+1\right]-\left[\left(n^2\right)^2-2n^2+1\right]\)
\(=\left(n^3+1\right)^2-\left(n^2-1\right)^2=\left(n^3+n^2\right)\left(n^3-n^2+2\right)=n^2\left(n+1\right)\left(n+1\right)\left(n^2-2n+2\right)\)\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
Ta có
\(n^2-2n+2>n^2-2n+1=\left(n-1\right)^2\left(1\right)\)
Mặt khác \(n^2-2n+2=n^2-2\left(n-1\right)\left(2\right)\)
Từ (1) và (2)
=>\(\left(n-1\right)^2
Xét tổng: \(1^2+2^2+3^2+....+2018^2\)
Tổng trên có số số hạng lẻ là:
\(\frac{2017-1}{2}=1009\)(số)
Số số hạng chẵn là: \(\frac{2018-2}{2}+1=1008\)(số)
Một tổng gồm 1009 số lẻ và 1008 số chẵn
Do đó chia hết cho 2 nhưng không chia hết cho 4
=> Không là SCP (đpcm)