Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=35^{2018}\left(35-1\right)=35^{2018}\cdot34⋮17\)
b: \(=43^{2018}\left(43+1\right)=43^{2018}\cdot44⋮11\)
d: \(=6mn-4m-9n+6-6mn+9m+4n-6\)
=5m-5n=5(m-n) chia hết cho 5
\(a^{2017}+a^{2018}+1=\left(a^{2017}-a\right)+\left(a^{2018}-a^2\right)+\left(a^2+a+1\right)\)
mà \(\left(a^{2017}-a\right)=a\left(a^{2016}-1\right)=a\left(\left(a^3\right)^{672}-1\right)⋮\left(a^3-1\right)⋮a^2+a+1\)
\(a^{2018}-a^2=a^2\left(a^{2016}-1\right)⋮a^2+a+1\)
=> \(a^{2017}+a^{2018}+1⋮a^2+a+1\)
a) Từ đề bài \(\Rightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\) \(\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{\left(x^2+y^2\right)^2}{a+b}\)
\(\Leftrightarrow\left(x^4b+y^4a\right)\left(a+b\right)-ab\left(x^2+y^2\right)^2=0\)
\(\Leftrightarrow b^2x^4-2abx^2y^2+a^2y^4=0\)
\(\Leftrightarrow\left(bx^2-ay^2\right)^2=0\) \(\Rightarrow bx^2=ay^2\) (ĐPCM)
b) Từ a \(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}\) Áp dụng DTSBN ta có :
\(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}\) hay \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{1}{a+b}\)
\(\Rightarrow\frac{x^{2018}}{a^{1004}}=\frac{y^{2018}}{b^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\) \(\Rightarrow\frac{x^{2018}}{a^{1004}}+\frac{y^{2018}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\) (ĐPCM)
\(2018^2-2017.2019\)
\(=2018^2-\left(2018-1\right)\left(2018+1\right)\)
\(=2018^2-\left(2018^2-1\right)=1\)
\(56^2+56.88+44^2\)
\(=56^2+2.56.44+44^2\)
\(=\left(56+44\right)^2\)
\(=100^2=10000\)
\(\frac{2018^3+1}{2018^2-2017}\)
\(=\frac{\left(2018+1\right)\left(2018^2-2018+1\right)}{2018^2-2017}\)
\(=\frac{2019\left(2018^2-2017\right)}{2018^2-2017}=2019\)
Chúc bạn học tốt.