K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2015

a) gọi d > 0 là ước số chung của 7n+10 và 5n+7
=> d là ước số của 5.(7n+10) = 35n +50
và d là ước số của 7(5n+7)= 35n +49
mà (35n + 50) -(35n +49) =1
=> d là ước số của 1 => d = 1
vậy 7n+10 và 5n+7 nguyên tố cùng nhau.
tick nhé bạn

5 tháng 1 2016

Ta có : k là ƯCLN của 7n + 10 và 5n + 7 
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k 
Hay 5(7n + 10 ) và 7(5n + 7 ) 
      35n + 50 và 35n + 49 chia hết cho k 
=> ĐPCM 

Hai bài kia bạn làm tương tư nhé , chúc may mắn 

4 tháng 11 2015

Gọi UCLN của 7n+10 và 5n+7 là d
7n+10 chia hết cho d => 5(7n+10) chia hết cho d
                                 hay 35n+50 chia hết cho d
5n+7 chia hết cho d=> 7(5n+7) chia hết cho d
                                 hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d 
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d
1 chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau

 

8 tháng 12 2022

Gọi UCLN của 7n+10 và 5n+7 là d
7n+10 chia hết cho d => 5(7n+10) chia hết cho d
                                 hay 35n+50 chia hết cho d
5n+7 chia hết cho d=> 7(5n+7) chia hết cho d
                                 hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d 
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d
1 chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau

 

12 tháng 11 2017

Gọi ƯCLN của 7n+10 và 5n+7 là d ( d thuộc N sao )

=> 7n+10 và 5n+7 đều chia hết cho d

=> 5.(7n+10) và 7.(5n+7) đều chia hết cho d hay 35n+50 và 35n+49 đều chia hết cho d

=> 35n+50-(35n+49) chia hết cho d hay 1 chia hết cho d => d = 1 ( vì d thuộc N sao )

=> ƯCLN của 7n+10 và 5n+7 là 1

=> 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau 

=> ĐPCM

12 tháng 11 2017

Gọi d là ƯCLN(7n + 10, 5n + 7), d\(\in\)N*

\(\Rightarrow\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}}\)

\(\Rightarrow\left(35n+50\right)-\left(35n+49\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(7n+10,5n+7\right)=1\)

\(\Rightarrow\)7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau.

27 tháng 9 2015

Gọi WCLN(7n+10; 5n+7) là d. Ta có:

7n+10 chia hết cho d => 35n+50 chia hết co d

5n+7 chia hết cho d => 35n+49 chia hết cho d

=> 35n+50-(35n+49) chia hết cho d

=> 1 chia hết cho d

=> d thuộc Ư(1)

=> d = 1

=> WCLN(7n+10; 5n+7) = 1

=> 7n+10 và 5n+7 nguyên tố cùng nhau (đpcm)

9 tháng 6 2017

28 tháng 12 2023

Gọi UCLN của 7n+10 và 5n+7 là d
7n+10 chia hết cho d => 5(7n+10) chia hết cho d
                                 hay 35n+50 chia hết cho d
5n+7 chia hết cho d=> 7(5n+7) chia hết cho d
                                 hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d 
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d
1 chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau

 

 

20 tháng 10 2015

1.1+3+5+...+(2n-1)=225 
<=>{[(2n-1)+1].[(2n-1)-1]:2 + 1} = 225 
<=> (2n.2n):4 = 225 
<=> n2=225 
=> n = 15 và n = -15 
Vì n thuộc N* nên n = 15 thỏa mãn

20 tháng 10 2015

Giải: 
1+3+5+...+(2n-1)=225 
<=>{[(2n-1)+1].[(2n-1)-1]:2 + 1}/2 = 225 
<=> (2n.2n):4 = 225 
<=> n^2=225 
suy ra n = 15 và n = -15 
do n thuộc N* nên n = 15 thỏa mãn

gọi d > 0 là ước số chung của 7n+10 và 5n+7 
=> d là ước số của 5.(7n+10) = 35n +50 
và d là ước số của 7(5n+7)= 35n +49 
mà (35n + 50) -(35n +49) =1 
=> d là ước số của 1 => d = 1 
vậy 7n+10 và 5n+7 nguyên tố cùng nhau. 

tích nha

9 tháng 11 2016

Gọi d là ƯCLN của 7n + 10 và 5n + 7.

Khi đó ta có 7n + 10 chia hết d và 5n + 5 chia hết d. Vậy thì 5( 7n +10) - 7( 5n+7) = 1 chia hết d. Vậy d = 1 hay 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau.

24 tháng 11 2017

giả sử (7n+10, 5n+7)=d

suy ra 7n+10chia hết d, 5n+7 chia hết d

suy ra 35n+50 chia hết d; 35n+7 chia hết d

suy ra 35n+50 - 35n-7 chia hết d

suy ra 1 chia hết d 

suy ra d=1

vậy UWCCLN (7n+10; 5n+7)=1

suy ra 7n+10;5n+7 là SNT cùng nhau