Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(1+7+7^2+7^3+...+7^{100}+7^{101}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=1.\left(1+7\right)+7^2.\left(1+7\right)+...+7^{100}.\left(1+7\right)\)
\(=1.8+7^2.8+...+7^{100}.8\)
\(=8.\left(1+7^2+...+7^{100}\right)\)
\(\Rightarrow1+7+7^2+7^3+...+7^{100}+7^{101}⋮8\)
ghép 2 số liên tiếp thành 1 nhóm
tất cả các nhóm đều chia ết cho 8
=> D có chia hết cho 8
TA CÓ : (1+7)+(7^2+7^3)+......+(7^100+7^101)
=> 8+(7(1+7))+.....+(7^100(1+7)
=> 8+7.8 +7^2.8+....+7^100.8
=> 8(1+7+7^2+.....+7^100)
MÀ 8 CHIA HẾT CHO 8 VẬY 1+7+7^2+...+7^101 CHIA HẾT CHO 8
dễ ợt mà cũng đăng
+)\(1+7+7^2+7^3+......+7^{101}\)
=\(\left(1+7\right)+\left(7^2+7^3\right)+\left(7^4+7^5\right)+........+\left(7^{100}+7^{101}\right)\)
\(=8+7^2\left(1+7\right)+7^4\left(1+7\right)+..........+7^{100}\left(1+7\right)\)
\(=8+7^2\cdot8+7^4\cdot8+.........+7^{100}\cdot8\)
\(=8\left(1+7^2+7^4+7^6+.........+7^{100}\right)⋮8\)Vì \(8⋮8\)
+)Cm chia hết cho 57 cũng làm tương tự nhóm 3 số lại với nhau:
\(1+7+7^2+7^3+7^4+.....+7^{101}\)
\(=57\left(1+7^4+7^7+......+7^{99}\right)⋮57\)Vì \(57⋮57\)
k mình nhé !!!!!
\(1+7+7^2+...+7^{101}\)
Nhóm các cặp số lại với nhau :
\(\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)=8+7^2\left(1+7\right)+7^4\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(\Leftrightarrow8\cdot\left(1+7^2+7^4+...+7^{100}\right)⋮8\)
D=(1+7)+72=(1+7)+......+7100(1+7)
D=8+72.8+.........+7100.8
D=8(1+72+...+7100) chia hết cho 8
Vậy D chia hết cho 8
\(a.\)\(5^{2003}+5^{2002}+5^{2001}\)
\(=5^{2001}.\left(1+5+5^2\right)\)
\(=5^{2001}.31\)
\(\Rightarrow5^{2003}+5^{2002}+5^{2001}⋮31\)
\(b.\)
\(1+7+7^2+7^3+......+7^{101}\)
\(=8+7^2.\left(1+7\right)+7^4.\left(1+7\right)+....+7^{100}.\left(1+7\right)\)
\(=8+7^2.8+7^4.8+.....+7^{100}.8\)
\(=8+8.\left(7^2+7^4+...+7^{100}\right)\)
Ta thấy cả hai số hạng đều chia hết cho 8
\(\Rightarrow1+7+7^2+7^3+......+7^{101}⋮8\)
Gọi phần a, là A,ta có:
A=1+4+42+43+...+42000
4.A=4.(1+4+42+...+42000)
4.A=4+42+43+44+...+42001
4.A-A=(4+42+43+...+42001)-(1+4+42+...+42000)
3.A=4+42+43+...+42001 -1-4-42-...-42000
3.A=42001-1
A=(42001-1):3
K CHO MIK NHÉ !
Có 1 + 7 + 72 + 73 + ... + 7101
=(1 + 7) + (72 + 73) + ... (7100+ 7101)
=(1 + 7) + 72(1 + 7) + ... 7100(1+ 7)
=(1+7)(1+72+..+7100)
=8(1+72+..+7100)
=> 1 + 7 + 72 + 73 + ... + 7101 chia hết cho 8