Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^3-13n=n\left(n^2-1\right)-12n.\)
\(=n\left(n-1\right)\left(n-2\right)-12n\)
Vậy chia hết cho 6 vì
n(n-1)(n-2) chia hết cho 2;3 => chia hết cho 6
12n chia hết cho 6
a) P = 5 + 5² + 5³ + ... + 5²⁰
= 5(1 + 5 + 5² + ... + 5¹⁹) ⋮ 5
Vậy P ⋮ 5
b) P = 5 + 5² + 5³ + ... + 5²⁰
= 5.(1 + 5) + 5³.(1 + 5) + ... + 5¹⁹.(1 + 5)
= 6.(5 + 5³ + ... + 5¹⁹) ⋮ 6
Vậy P ⋮ 6
c) P = 5 + 5² + 5³ + 5⁴ + ... + 5¹⁷ + 5¹⁸ + 5¹⁹ + 5²⁰
= 5.(1 + 5 + 5² + 5³) + ... + 5¹⁷.(1 + 5 + 5² + 5³)
= 5.156 + ... + 5¹⁷.156
= 156.(5 + 5⁵ + 5⁹ + 5¹³ + 5¹⁷)
= 13.12.(5 + 5⁵ + 5⁹ + 5¹³ + 5¹⁷) ⋮ 13
Vậy P ⋮ 13
a: P=5(1+5+5^2+...+5^19) chia hết cho 5
b: P=5(1+5)+5^3(1+5)+...+5^19(1+5)
=6(5+5^3+...+5^19) chia hết cho 6
c: P=5(1+5+5^2+5^3)+...+5^17(1+5+5^2+5^3)
=156(5+5^5+5^9+5^13+5^17) chia hết cho 13
a)116+115=(..................1)+(..................1)=..........................2
Vì có chữ số tận cùng là 2 nên chia hết cho 4
Bài này thì chắc phải dùng đồng dư -_-
a) Ta có:
11 đồng dư với -1 (mod 4) => 115 đồng dư với (-1)5 = -1 (mod 4) => 115 + 1 chia hết cho 4
=> 116 đồng dư với (-1)6 (mod 4)
=> 116 đồng dư với 1 (mod 4)
=> 116 - 1 chia hết cho 4
=> (116 - 1) + (115 + 1) chia hết cho 4
=> 116 + 115 chia hết cho 4
a) \(4^{13}+4^{14}+4^{15}+4^{16}=4^{13}\left(1+4\right)+4^{14}\left(1+4\right)=4^{13}.5+4^{14}.5=5\left(4^{13}+4^{14}\right)⋮5\Rightarrow dpcm\)
c) \(2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}\)
\(=2^{10}\left(1+2+2^2\right)+2^{13}\left(1+2+2^2\right)\)
\(=2^{10}.7+2^{13}.7=7\left(2^{10}+2^{13}\right)⋮7\Rightarrow dpcm\)
Câu c bạn xem lại đê
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
a) 5^23 và 6 . 5^22
Ta có: 5^23 = 5^22 . 5
Vì 5 < 6 nên 5^23 < 6 . 5^22
b) 7 . 2^13 và 2^16
Ta có: 2^16 = 2^13 . 2^3 = 2^13 . 8
Vì 7 < 8 nên 7 . 2^13 < 2^16
c) 21^15 và 27^5 . 49^8
Ta có: 21^15 = (3.7)^15 = 3^15 . 7^15
27^5 . 49^8 = (3^3)^5 . (7^2)^8 = 3^15 . 7^16
Vì 7^15 < 7^16 nên 21^15 < 27^5 . 49^8
15-2 mũ 6 của em nếu viết bằng dấu là (15-2)^6 hay là 15-2^6 vậy
15-2^6 chị nhé