\(2\left(3^0+3^1+3^2+3^3+....+3^{n-1}\right)=3^n-1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2019

CMR: 2(30 + 31 + 32 + 33 +....+ 3n-1) = 3n - 1

đặt A = 30 + 31 + 32 + 33 +....+ 3n-1

⇒ 3A = 31 + 32 + 33+ 34 +...+ 3n-1 + 3n

⇒ 3A - A = 31 + 32 + 33 + 34 +...+ 3n-1 + 3n

- (30 + 31 + 32 + 33 +....+ 3n-1)

⇒ 2A = 3n - 30

⇒ A = \(\frac{3^n-1}{2}\)

⇒ 2(30 + 31 + 32 + 33 +....+ 3n-1) = 2 . \(\frac{3^n-1}{2}\) = 3n - 1

vậy 2(30 + 31 + 32 + 33 +....+ 3n-1) = 3n - 1

27 tháng 8 2019

thanks nha

16 tháng 11 2017

Bài đầu đơn giản rồi , tự tính nhé <3

Bài 2

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.3^2-2^n.2^2+3^n-2^n\)

\(=\left(3^n.3^2+1\right)-\left(2^n.2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)⋮10\)

Vậy.....

12 tháng 11 2015

3n+2 - 2n+2 +3n - 2n = 3n . 32 - 2n. 22 +3n -2n

                             = 3n(32+1) - (2n.22 +2n)

                             =3n . 10 - 2n .5

                             =3n.10 - 2n-1 .2 .5

                             = 3n.10 - 2n-1 .10

                             = 10(3n - 2n-1)

vì 10 chia hết cho 10 nên 10(3n-2n-1) chia hết cho 10

                         =>  3n+2 - 2n+2 +3n -2n chia hết cho 10

                           

12 tháng 11 2015

Ai làm nhanh nhất mình sẽ **** xin cảm ơn các bạn mình đang cần gấp

 

14 tháng 7 2017

a,

\(\left(4x-\dfrac{1}{3}\right)^6=1\\ \Rightarrow\left[{}\begin{matrix}4x-\dfrac{1}{3}=1\\4x-\dfrac{1}{3}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4x=\dfrac{4}{3}\\4x=\dfrac{-2}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=\dfrac{-1}{6}\end{matrix}\right.\)

b,

\(\left(5x-\dfrac{2}{3}\right)^2=0\\ \Rightarrow5x-\dfrac{2}{3}=0\\ 5x=\dfrac{2}{3}\\ x=\dfrac{2}{15}\)

c,

\(\left(\dfrac{1}{3}x-\dfrac{1}{2}\right)^3=-8\\ \Rightarrow\dfrac{1}{3}x-\dfrac{1}{2}=-2\\ \dfrac{1}{3}x=\dfrac{-3}{2}\\ x=\dfrac{-9}{2}\)

d,

\(\dfrac{81}{3^n}=3\\ \Leftrightarrow3^4:3^n=3^1\\\Leftrightarrow3^{4-n}=3^1 \\ \Rightarrow n=3\)

e,

\(\dfrac{\left(-2\right)^x}{64}=-2\\ \Leftrightarrow\left(-2\right)^x:\left(-2\right)^6=\left(-2\right)^1\\ \Leftrightarrow\left(-2\right)^{x-6}=\left(-2\right)^1\\ \Rightarrow x=7\)

f,

\(\left(-20\right)^n:10^n=16\\ \left[\left(-20\right):10\right]^n=16\\ \left(-2\right)^n=\left(-2\right)^4\\ \Rightarrow n=4\)

14 tháng 7 2017

Bài 1:

a) \(\left(4x-\dfrac{1}{3}\right)^6=1\)

\(\Rightarrow4x-\dfrac{1}{3}=1\)

\(4x=1+\dfrac{1}{3}\)

\(4x=\dfrac{4}{3}\)

\(x=\dfrac{4}{3}:4\)

\(x=\dfrac{1}{3}\)

b) \(\left(5x-\dfrac{2}{3}\right)^2=0\)

\(\Rightarrow5x-\dfrac{2}{3}=0\)

\(5x=\dfrac{2}{3}\)

\(x=\dfrac{2}{3}:5\)

\(x=\dfrac{2}{15}\)

c) \(\left(\dfrac{1}{3}x-\dfrac{1}{2}\right)^3=-8\)

\(\Rightarrow\left(\dfrac{1}{3}x-\dfrac{1}{2}\right)^3=\left(-2\right)^3\)

\(\dfrac{1}{3}x-\dfrac{1}{2}=-2\)

\(\dfrac{1}{3}x=-2+\dfrac{1}{2}\)

\(\dfrac{1}{3}x=\dfrac{-3}{2}\)

\(x=\dfrac{-3}{2}:\dfrac{1}{3}\)

\(x=\dfrac{-9}{2}\)

d) \(\dfrac{81}{3^n}=3\)

\(\Rightarrow\dfrac{3^4}{3^n}=3\)

\(\Rightarrow3^n.3=3^4\)

\(3^{n+1}=3^4\)

n + 1 = 4

n = 4 - 1

n = 3

e) \(\dfrac{\left(-2\right)^x}{64}=-2\)

\(\Rightarrow\dfrac{\left(-2\right)^x}{\left(-2\right)^6}=-2\)

\(\Rightarrow\left(-2\right)^x=\left(-2\right)^6.\left(-2\right)\)

\(\left(-2\right)^x=\left(-2\right)^7\)

x = 7

f) (-20)n : 10n = 16

(-20 : 10)n = 16

(-2)n = 16

(-2)n = (-2)4

n = 4.

5 tháng 8 2018

\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}\)

\(\Leftrightarrow\sqrt{2.\left[1+2+3+...+\left(n-1\right)+n\right]-n}\)

\(\Leftrightarrow\sqrt{2.\frac{\left(n+1\right)n}{2}-n}\)

\(\Leftrightarrow\sqrt{\left(n+1\right)n-n}\)

\(\Leftrightarrow\sqrt{n^2+n-n}\)

\(\Leftrightarrow\sqrt{n^2}=n\)

Vậy \(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\)

30 tháng 7 2017

\(\sqrt{1+2+3+...+n-1+n-1+...+3+2+1}\)

\(=\sqrt{2\left[1+2+3+...+n-1\right]+n}\)

\(=\sqrt{\frac{2\left[n-1\right]n}{2}}+n=\sqrt{n^2}=n\)=> ĐPCM

8 tháng 11 2024

CCó cái chem chép

18 tháng 9 2019

\(B=\left(1-\frac{3}{2.4}\right)\left(1-\frac{3}{3.5}\right)\left(1-\frac{3}{4.6}\right)...\left(1-\frac{3}{n\left(n+2\right)}\right)\)

\(=\frac{1.5}{2.4}.\frac{2.6}{3.5}.\frac{3.7}{4.6}...\frac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)

\(=\frac{\left[1.2.3...\left(n-1\right)\right]\left[5.6.7...\left(n+3\right)\right]}{\left(2.3.4...n\right)\left[4.5.6...\left(n+2\right)\right]}\)

\(=\frac{n+3}{4n}< 2\left(đpcm\right)\)