Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: x+16= (x+1)+15
mà x+1 chia hết cho x+1
suy ra 15 chia hết cho x+1
suy ra x+1 thuộc Ư(15)
Ư(15)= 1;3;5;15
TH1: x+1=1 suy ra x=0
TH2: x+1=3 suy ra x=2
TH3: x+1 = 5 suy ra x =4
TH4 x+1 = 15 suy ra x=14
Vậy x=0;2;4 hoặc 14
b) x lớn nhất và 36;45;18 chia hết cho x
suy ra x thuộc ƯCLN(36;45;18)
Ta có: 36= 3^2.2^2
45= 5.3^2
18=3^2.2
suy ra ƯCLN(36;45;18) = 3^2=9
suy ra x=9
Vậy x=9
c) 150;84;30 chia hết cho x suy ra x thuộc ƯC (150;84;30)
ta có: 150=5^2.3.2
84=7.3.2^2
30=5.3.2
suy ra ƯCLN(150;84;30)=2.3=6
Ư(6)= x nên x nhận các giá trị là 1;2;3;6
mà 0<x<16 nên x =1;2;3;6
Vậy x = 1;2;3;6
d) 10^15+8 = 100....000 + 8 ( có 15 số 0)
= 100....0008
Vì tận cùng là 8 nên 10^15+8 chia hết cho 2
Vì tổng các chữ số là 9 nên 10^15 chia hết cho 9
Vậy 10615 chia hết cho 2 và 9
b2) Nhóm 2 số 1 cặp, ta có:
A= 2.(1+2) + 2^3 . (1+2) + .....+ 2^2009. (1+2)
A= 2.3+2^3.3+...+2^2009.3
A= 3. ( 2+2^3+...+2^2009) chia hết cho 3
Vậy A chia hết cho 3
Nhóm 3 số 1 cặp
A= 2.(1+2+2^2) + 2^4.(1+2+2^2)+....+2^2008. ( 1+2+2^2)
A= 2.7+2^3.7+...+2^2008.7
A= 7. (2+2^4+...+ 2^2008) chia hết cho 7
Vậy A chia hết cho 7
b) 2.A= 2.(1+2+2^2+...+2^2010)
2.A= 2+2^2+2^3+...+2^2010+2011
2.A - A = (2+2^2+2^3+...+2^2011) - (1+2+2^2+...+2^2010)
1.A = 2^2011 - 1
Ta thấy: A= 2^2011-1 B= 2^2011-1
suy ra A=B
Vậy A=B
c) A<B
A=2+2^2+...........+2^60
c\m c\h cho 3:2+2^2+....+2^60=2.(1+2)+........+2^59(1+2)
=2.3+.........+2^59.3
=(2+...+2^59).3
=>A chia hết cho 3
cau tiếp tuong tu
3
Ta chứng minh A chia hết cho 3:
A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
=2.(1+2)+2^3.(1+2)+...+2^59.(1+2)
=2.3+2^3.3+...+2^59.3
=3.(2+2^3+...+2^59) chia hết cho 3
Ta chứng minh A chia hết cho 7
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)
=2.(1+2+4)+2^4.(1+2+4)+...+2^58.(1+2+4)
=2.7+2^4.7+...+2^58.7
=7.(2+2^4+...+2^58) chia hết cho 7
Ta chứng minh A chia hết cho 15
A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^57+2^58+2^59+2^60)
=2.(1+2+4+8)+2^5.(1+2+4+8)+....+2^57.(1+2+4+8)
=2.15+2^5.15+..+2^57.15
=15.(2+2^5+...+2^57) chia hết cho 15
2n+13 chia hết cho 2n+5
=>[( 2n+13)-(2n+5)] chia hết cho 2n+5
=>8 chia hết cho 2n+5=>2n+5 la uoc của 8
U(8)={1;2;4;8}
còn lại bạn tự giải quyết nha
A=2+22+23+24+...+2100
A=(2+22+23+24)+...+(297+298+299+2100)
A=2x(1+2+22+23)+...+297x(1+2+22+23)
A=2x15+...+297x15
A=15x(2+...+297)
Vậy A\(⋮\)15
A=2+22+23+24+...+2100
=>2A=22+23++...+2101
=>A=2A-A=(22+23+24+25...+2101)-(2+22+23+24+...+2100)
=>A=2101-2=225x4-2=...6-2=...4
Vậy chữ số tận cùng của A là 4
Ta có: m.n(m2 – n2) = m.n[(m2 – 1) – ( n2 – 1)]
= n[m(m2 – 1) – m{n( n2 – 1)}]
=m.n( m – 1)( m + 1) – m.n( n – 1)(n + 1)
Vì: m( m – 1)(m + 1) chia hết cho 6 (tích của 3 số tự nhiên liên tiếp)
và n(n – 1)(n + 1) chia hết cho 6 (tích của 3 số tự nhiên liên tiếp
=> mn(m2 - n2) chia hết cho 6.(đpcm)
1a số tận cùng là 2
b số tận cùng là 4
c số tận cùng là 1
d số tận cùng là 1
B=2+2^2+2^3+2^4+2^5+....+2^2020
B=(2+2^2+2^3+2^4)+...+(2^2017+2^2018+2^2019+2^2020)
B=2.(1+2+4+8)+...+2^2017(1+2+4+8)
B=2.15+...+2^2017.15
=> B chia hết co 15
Ta có : 2+22+23+...+260
=(2+22+23+24)+(25+26+27+28)+...+(257+258+259+260)
=2(1+2+22+23)+25(1+2+22+230+...+257(1+2+22+23)
=2.15+25.15+...+257.15\(⋮\)15
hay 2+22+23+..+260\(⋮\)15
Vậy 2+22+23+...+260\(⋮\)15.
Đặt:
M=21+22+23+...+260
M=(21+22+23+24)+(25+26+27+28)+...+(257+258+259+260)
M=2(1+2+22+23)+25(1+2+22+23)+...+257(1+2+22+23)
M=2.15+25.15+257.15
M=15(2+25+...+257)
=>M chia hết cho 15
Vậy M chia hết cho 15(đpcm)