Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
Gọi d là ƯCLN của (12n + 2 và 30n + 2).
Ta có:
=>12n + 1 - 30n + 2 chia hết cho d
=>5(12n+1) - 2(30n+2) chia hết cho d
=>60n + 5 - 60n + 4 chia hết cho d
=>1 chia hết cho d
=> 12n + 1 và 30n + 2 là 2 số nguyên tố cùng nhau
đpcm
Gọi d = ƯCLN ( 12n + 1 ; 30n + 2 )
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\) \(\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}}\) \(\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Do đó : ƯCLN ( 12n + 1 ; 30n + 2 ) = 1
Vậy 2 số \(12n+1\)\(;\) \(30n+2\)là 2 số nguyên tố cùng nhau
đ, gọi d là ước nguyên tố chung của 2n + 1 và 6n + 5
ta có : 2n + 1 : hết cho d ; 6n + 5 : hết cho d
=> 3( 2n + 1) : hết cho d : 6n + 5 : hết cho d
=> ( 6n + 5) - 3( 2n + 1) : hết cho d
=> 2 : hết cho d
=> d = 2
mà 2n + 1 ko : hết cho d
=> d = 1( dpcm)
a) Goi d la UCLN ( n ; n+1 ) b) Goi d la UCLN ( 3n+2 ;5n+3)
n+1 chia het cho d 3n+2 chia het cho d-->5(3n+2) chia het cho d
n chia het cho d 5n+3 chia het cho d-->3(5n+3) chia het cho d
-> n+1-n chia het cho d ->5(3n+2)-3(5n+3) chia het cho d
-> 1 chia het cho d -> 15n+10-15n-9 chia het cho d
Va n va n+1 la hai so ngto cung nhau - -> 1 chia het cho d
Vay 3n+2 va 5n+3 chia het cho d
c) Goi d la UCLN (2n+1;2n+3) d) Goi d la UCLN (2n+1;6n+5)
2n+1 chia het cho d 2n+1 chia het cho d-->3(2n+1) chiA het cho d
2n+3 chia het cho d--> 2n+1+2 chia het cho d 6n+5 chia het cho d
->2 chia het cho d ->6n+5-3(2n+1) chia het cho d
--> d \(\in\)U (2)-> d\(\in\) {1;2} -> 6n+5-6n-3 chia het cho d
d=2 loai vi 2n+1 khong chia het cho 2-> d=1 ->2 chia het cho d
Vay 2n+1 va 2n+3 la hai so ng to cung nhau --> d \(\in\)U (2)-> d\(\in\) {1;2}
d=2 loai vi 5n+3 k chia het cho 2-->d=1
vay 2n+1 va 6n+5 la2 so ng to cung nhAU
gọi d là UC(2n+1;3n+1)
ta có 2n+1 chia hết cho d=>3(2n+1) chia hết cho d hay 6n+3 chia hết cho d
3n+1 chia hết cho d =>2(3n+1) chia hết cho d hay 6n+2 chia hết cho d
(2n+1)-(3n+1) chia hết cho d=>(6n+3)-(6n+2) chia hết cho d hay 1 chia hết cho d
=> d thuộc U(1)={1}
=> d =1
=> UCLN(2n+1;3n+1)=1=> 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau
tick nha!!!!!!!!!!