Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+5+5^2+5^3+...+5^{99}\)
\(A=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)\)
\(A=6+5^2\cdot6+...+5^{98}\cdot6\)
\(A=6\left(1+5^2+...+5^{98}\right)⋮6\)
\(B=1+5+5^2+5^3+...+5^{100}\)
\(B=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)+5^{100}\)
\(B=6+6\cdot5^2+...+6\cdot5^{98}+5^{100}\)
\(B=6\left(1+5^2+...+5^{98}\right)+5^{100}\)
a ⋮ c; b không chia hết cho c => a + b không chia hết cho c
a) 942^60 - 351^37 chia hết cho 5
2^1 có c/số tận củng là 2
2^2 có c/số tận củng là 4
2^3 có c/số tận củng là 8
2^4 có c/số tận củng là 6
2^5 có c/số tận củng là 2
................................
=>Các số có c/số tận cung là 2 có lũy thừa được kết quả có c/số tân cung lặp lại theo quy luật 1 nhóm 4 c/số sau (2;4;8;6)
ta có 60: 4=15(nhóm) => 942^60 có c/số tận cùng là c/số tận cùng của nhóm thứ 15 và là c/số 6
mặt khác 351^37 có kết quả có c/số tận cùng là 1 (vì 351 có c/số tận cung =1)
=>kết quả phép trừ 942^60 - 351^37 có c/số tận cùng là: 6-1=5
=>942^60 - 351^37 chia hết cho 5
Mình sẽ giải phần a,phần b tương tự nhớ!
1)3a+b chia hết cho 11.
2 và 11 nguyên tố cùng nhau.
Vì vậy:
Nếu 2.(4a+5b) chia hết cho 11 thì 4a+5b chia hết cho 11.
2.(4a+5b)+3a+b.
11a+11b chia hết cho 11.
Mà 3a+b chia hết cho 11 suy ra 4a+5b chia hết cho 11.
Chúc bạn học tốt^^
Mình sẽ giải phần a,phần b tương tự nhớ!
1)3a+b chia hết cho 11.
2 và 11 nguyên tố cùng nhau.
Vì vậy:
Nếu 2.(4a+5b) chia hết cho 11 thì 4a+5b chia hết cho 11.
2.(4a+5b)+3a+b.
11a+11b chia hết cho 11.
Mà 3a+b chia hết cho 11 suy ra 4a+5b chia hết cho 11.
Chúc bạn học tốt^^
Ta có: 5+52+......+599+5100
Có: (100-1):1+1 = 100 ( số hạng)
5+52+53+44+.....+599+5100
= (5+52)+(53+54)+....+(599+5100)
= 5.(1+5) + 53.(1+5)+......+599.(1+5)
= 5. 6 + 53.6 + ........+ 599.6
= 30 + 6. (53+...+599) chia hết cho 30
Vậy tổng trên chia hết cho 30
Tick nha?
S = 2 + 23 + 25 + 27 + .... + 299
=( 2 + 23 ) + ( 25 + 27 ) + .....+ ( 298 + 299 )
=( 2 + 23 ) + 25.( 1+ 4 ) + ....+ 298 . ( 1 + 4 )
= ( 2 + 23 ) . ( 25 + 29 + ... + 298 )
= 10 . ( 25 + 29 + ...+ 298 )
Vậy S chia hết cho 15
tk mk nha
chúc bạn học tốt
Vì B có 101 so hạng nên ta chia B thành 50 nhoms moi nhom co 2 so hạng và thừa 1 so hạng như sau:
\(B=1+\left(5+5^2\right)+\left(5^3+5^4\right)+.....+\left(5^{99}+5^{100}\right)=1+5\left(1+5\right)+5^3\left(1+5\right)+.....+5^{99}\left(1+5\right)=1+5.6+5^3.6+....+5^{99}.6=1+6\left(5+5^3+.....+5^{99}\right)\Rightarrow\text{B chia 6 d}ư\text{ 1}\Rightarrow B⋮̸6\left(đpcm\right)\)
Để ý rằng B có 101 số hạng do đó không thể tách thành từ nhóm 2 số. Ta sẽ tách sao cho số 1 nằm ở ngoài, tổng các thừa số kia chia hết cho 6.
\(B=1+5\left(5+1\right)+5^3\left(5+1\right)+...+5^{99}\left(5+1\right)\)
\(=1+6\left(5+5^3+...+5^{99}\right)\)
Ta có: 1 không chia hết cho 6, \(6\left(5+5^3+...+5^{99}\right)⋮6\)
Do đó B không chia hết cho 6(đpcm)
Ai chứng minh được tớ tặng 1 Iphone 7 Plus
dễ mà xem tui giải nè :
CMR ;2.2^3.2^5......2^99 chia hết cho 5
= (2.2^3) (2^5.2^7),....(2^97.2^99)
= 2 (1+2^2) . 2^5 (1+2^2)...........2^97(2^2 +1)
= 2.5 +2^5.5 +.......+2^97 .5
= (2.2^5 ......2^97) .5
:vì (2.2^5 ......2^97) .5 chia hất cho 5 nên suy ra 2.2^3.2^5.........2^99 chia hết cho 5