K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2017

Ai chứng minh được tớ tặng 1 Iphone 7 Plus

29 tháng 11 2017

dễ mà xem tui giải nè :

CMR ;2.2^3.2^5......2^99 chia hết cho 5

= (2.2^3) (2^5.2^7),....(2^97.2^99)

= 2 (1+2^2) . 2^5 (1+2^2)...........2^97(2^2 +1)

= 2.5 +2^5.5 +.......+2^97 .5

= (2.2^5 ......2^97) .5 

:vì (2.2^5 ......2^97) .5 chia hất cho 5 nên suy ra 2.2^3.2^5.........2^99 chia hết cho 5

9 tháng 7 2019

\(A=1+5+5^2+5^3+...+5^{99}\)

\(A=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)\)

\(A=6+5^2\cdot6+...+5^{98}\cdot6\)

\(A=6\left(1+5^2+...+5^{98}\right)⋮6\)

\(B=1+5+5^2+5^3+...+5^{100}\)

\(B=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{98}+5^{99}\right)+5^{100}\)

\(B=6+6\cdot5^2+...+6\cdot5^{98}+5^{100}\)

\(B=6\left(1+5^2+...+5^{98}\right)+5^{100}\)

a ⋮ c; b không chia hết cho c => a + b  không chia hết cho c

20 tháng 10 2017

Sai đề

10 tháng 12 2017

Đề đúng mà¡¡¡¡¡¡¡¡¡

11 tháng 11 2015

a) 942^60 - 351^37 chia hết cho 5 
2^1 có c/số tận củng là 2 
2^2 có c/số tận củng là 4 
2^3 có c/số tận củng là 8 
2^4 có c/số tận củng là 6 
2^5 có c/số tận củng là 2 
................................ 
=>Các số có c/số tận cung là 2 có lũy thừa được kết quả có c/số tân cung lặp lại theo quy luật 1 nhóm 4 c/số sau (2;4;8;6) 
ta có 60: 4=15(nhóm) => 942^60 có c/số tận cùng là c/số tận cùng của nhóm thứ 15 và là c/số 6 
mặt khác 351^37 có kết quả có c/số tận cùng là 1 (vì 351 có c/số tận cung =1) 
=>kết quả phép trừ 942^60 - 351^37 có c/số tận cùng là: 6-1=5 
=>942^60 - 351^37 chia hết cho 5 

25 tháng 8 2016

Mình sẽ giải phần a,phần b tương tự nhớ!

1)3a+b chia hết cho 11.

2 và 11 nguyên tố cùng nhau.

Vì vậy:

Nếu 2.(4a+5b) chia hết cho 11 thì 4a+5b chia hết cho  11.

2.(4a+5b)+3a+b.

11a+11b chia hết cho 11.

Mà 3a+b chia hết cho 11 suy ra 4a+5b chia hết cho 11.

Chúc bạn học tốt^^

25 tháng 8 2016

Mình sẽ giải phần a,phần b tương tự nhớ!

1)3a+b chia hết cho 11.

2 và 11 nguyên tố cùng nhau.

Vì vậy:

Nếu 2.(4a+5b) chia hết cho 11 thì 4a+5b chia hết cho  11.

2.(4a+5b)+3a+b.

11a+11b chia hết cho 11.

Mà 3a+b chia hết cho 11 suy ra 4a+5b chia hết cho 11.

Chúc bạn học tốt^^

1 tháng 12 2015

Ta có: 5+52+......+599+5100

Có: (100-1):1+1 = 100 ( số hạng)

5+52+53+44+.....+599+5100

= (5+52)+(53+54)+....+(599+5100)

= 5.(1+5) + 53.(1+5)+......+599.(1+5)

= 5. 6      + 53.6 + ........+ 599.6

= 30 + 6. (53+...+599) chia hết cho 30

Vậy tổng trên chia hết cho 30

Tick nha?

3 tháng 10 2017

S = 2 + 23 + 2+ 27 + .... + 299

=( 2 + 23 ) + ( 25 + 27 ) + .....+ ( 298 + 299 )

=( 2 + 23 ) + 25.( 1+ 4 ) + ....+ 298 . ( 1 + 4 )

= ( 2 + 2) . ( 2+ 2+ ... + 298 )

= 10 . ( 25 + 29 + ...+ 298 )

Vậy S chia hết cho 15

tk mk nha

chúc bạn học tốt

10 tháng 7 2019

Vì B có 101 so hạng nên ta chia B thành 50 nhoms moi nhom co 2 so hạng và thừa 1 so hạng như sau:

\(B=1+\left(5+5^2\right)+\left(5^3+5^4\right)+.....+\left(5^{99}+5^{100}\right)=1+5\left(1+5\right)+5^3\left(1+5\right)+.....+5^{99}\left(1+5\right)=1+5.6+5^3.6+....+5^{99}.6=1+6\left(5+5^3+.....+5^{99}\right)\Rightarrow\text{B chia 6 d}ư\text{ 1}\Rightarrow B⋮̸6\left(đpcm\right)\)

10 tháng 7 2019

Để ý rằng B có 101 số hạng do đó không thể tách thành từ nhóm 2 số. Ta sẽ tách sao cho số 1 nằm ở ngoài, tổng các thừa số kia chia hết cho 6.

\(B=1+5\left(5+1\right)+5^3\left(5+1\right)+...+5^{99}\left(5+1\right)\)

\(=1+6\left(5+5^3+...+5^{99}\right)\)

Ta có: 1 không chia hết cho 6, \(6\left(5+5^3+...+5^{99}\right)⋮6\)

Do đó B không chia hết cho 6(đpcm)